Modular Electric Linear Drive Systems

0

L

 OOAIGA

Attention!

Contact Hoerbiger-Origa for sizing software and/or technical assistance 630-871-8300 Application Sheet on Page 147

All dimensions are in European-Standard. Please convert all in US-Standard.

Conversion Table

Multiply	By	To Obtain
Millimeters	.03937	Inches
Newtons	.2248	Lbs.(F)
Newton-Meters	8.8512	In-Lbs
Kilograms	2.205	Lbs.
Inches	25.4	Millimeters
Lbs.(F)	4.448	Newtons
In-Lbs	.113	Newtons-Meters
Lbs.	.45359	Kilograms

HOERBIGER-ORIGA Corporation • 100 West Lake Drive • IL-Glendale Heights, Illinois • Tel. 630-871-8300 • Fax 630-871-1515 • e-mail: info-hous-market@ hoerbiger.com Internet http://www.hoerbigeroriga.com

Electric Linear Drive Systems

Page
Introduction-OSP Concept 2-3
Modular Components Overview 4-7
Applications for OSP-E Drives 8-9
Belt-Driven

- With Integrated Roller Guide 11-23
- Recirculating Ball Bearing GuideSeries OSP-E..BHD 25, 32, 50
Multi-Axis Connection System 26-28
Adapter Plates 29-37
Intermediate Drive Shaft 38
- Accessories-OSP-E..BHD 40-45
- With Integral Guidance 47-56
Series OSP-E..B 25, 32, 50
- ForSynchronized Bi-Parting 58-66
Movements
Series OSP-E..BP 25, 32, 50
- Accessories-LinearDrive OSP-E 68-78
Ball-Screw-Driven
- Series OSP-E..S25,32,50 79-89
- Accessories-OSP-EBallscrew 92-102
- Series OSP-E..SBR25,32,50 103-110
Page
Page
Linear Guides
Overview 115-116
Plain Bearing Guide SLIDELINE 117-118
Roller Guide POWERSLIDE 119-122
Ball Bushing Guide GUIDELINE 123-127
Aluminium-Roller Guide PROLINE 127-129
Proximity Sensors 130-132
Gearboxes and Motor Mounts 134-143
Ordering Instructions 144-145
Application Sheet 147

The
System Concept

ORIGA SYSTEM PLUS
 - ONE CONCEPT
 - THREE DRIVE OPTIONS

Based on the ORIGA rodless cylinder, proven in world wide markets, HOERBIGERORIGA now offers the complete solution for linear drive systems. Designed for absolute reliability, high performance, ease of use and optimised engineering the ORIGA SYSTEM PLUS satisfies even the most demanding applications.

ORIGA SYSTEM PLUS

is a totally modular concept which offers the choice of pneumatic or electric actuation, with guidance and control modules to suit the exact needs of individual

SYSTEM MODULARITY

- Electric Screw Drive
- For high force capability and accurate path and position control.

- Electric Belt Drive

- For high speed applications, accurate path and position control and longer strokes.

ORIGA SYSTEM PLUS

- ONE CONCEPT
- THREE DRIVE OPTIONS

| Linear Guides |
| :--- | :--- |
| - SLIDELINE |
| - Serins OSP-P (pneumatic)* |
| Series OSP-E Screw | | Linear Guides |
| :--- |
| - POWWERSLIDE |
| Series OSP-P (pneumatic)* |
| - Series OSP-E Belt |
| Series OSP-E Screw |

Linear Drives	$\begin{aligned} & \text { OSP-E25 } \\ & \text {-BHD }{ }^{1} \text {) } \end{aligned}$	$\begin{aligned} & \text { OSP-E32 } \\ & \text {-BHD }{ }^{1} \end{aligned}$	$\begin{aligned} & \text { OSP-E50 } \\ & \text {-BHD }{ }^{1} \text {) } \end{aligned}$	$\begin{gathered} \text { OSP-E25 } \\ \left.-B^{2}\right) \end{gathered}$	$\begin{gathered} \text { OSP-E32 } \\ \left.-B^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { OSP-E50 } \\ & \left.-B^{2}\right) \end{aligned}$	$\begin{gathered} \text { OSP-E25 } \\ \text {-BP }{ }^{3} \text {) } \end{gathered}$	$\begin{gathered} \hline \text { OSP-E32 } \\ \left.-B P^{3}\right) \end{gathered}$	$\begin{gathered} \text { OSP-E50 } \\ \text {-BP }{ }^{3} \text {) } \end{gathered}$
Effective action force［ N ］	550－1070	1030－1870	1940－3120	50	100－150	300－425	50	100－150	300－425
Velocity v［ m / s ］	10，0／5	10，0／5	10，0／5	2，0	3，0	5，0	2，0	3，0	5，0
Magnetic piston（three sides）	］	］	］	］	\square	］	］	］	］
Free choice of stroke length［mm］粎	1－7000	1－7000	1－7000	1－3000	1－5000	1－5000	1－1500 x 2	1－2500 $\times 2$	1－2500 x 2
Temperature range［ ${ }^{\circ} \mathrm{C}$ ］米	－30－＋80	$-30-+80$	$-30-+80$	$-30-+80$	$-30-+80$	$-30-+80$	$-30-+80$	$-30-+80$	－30－＋80
Stainless steel parts	X	\times	X	\times	\times	X	\times	X	X
Tandem piston	\bigcirc	O							
Self－Guidance									
L［N］	986／3000	1348／1000	3704／15000	160	300	850	160	300	850
M［ Nm］	64／500	115／1000	365／1800	12	25	80	12	25	80
Ms［ Nm ］	11／50	19／120	87／180	2	8	16	2	8	16
Mv［ Nm ］	64／500	115／1400	365／2500	8	16	32	8	16	32
Slideline									
L［N］	－	－	－	X	X	X	X	X	X
M［ Nm ）］	－	－	－	X	X	X	X	X	X
Ms［ Nm ］	－	－	－	\times	\times	X	\times	\times	X
Mv［ Nm ］	－	－	－	X	X	X	X	X	X
Proline									
L［N］	－	－	－	986	1348	3582	986	1348	3582
M［ Nm ）］	－	－	－	44	84	287	44	84	287
Ms［ Nm ］	－	－	－	19	33	128	19	33	128
Mv［ Nm ］	－	－	－	44	84	287	44	84	287
Powerslide									
L［N］	－	－	－	910－1190	1400－2300	3000－4000	910－1190	1400－2300	3000－4000
M ［ Nm ］	－	－	－	63－175	70－175	250－350	63－175	70－175	250－350
Ms［ Nm ］	－	－	－	14－20	20－50	90－140	14－20	20－50	90－140
Mv［ Nm ］	－	－	－	63－175	70－175	250－350	63－175	70－175	250－350
Guideline									
L［N］	\bigcirc	0	\bigcirc	1650－2500	1650－2500	4400－8000	1650－2500	1650－2500	4400－8000
M ［ Nm ］	\bigcirc	\bigcirc	\bigcirc	115	145	500	115	145	500
Ms［ Nm ］	\bigcirc	\bigcirc	\bigcirc	75	90	375	75	90	375
Mv ［ Nm ］	0	\bigcirc	\bigcirc	90	115	355	90	115	355
Guideline with shock absorber for cushioning	\bigcirc	O							
Aktiv brake									
Braking force at 6 bar（brake surface dry）［N］	X	X	X	0	0	\bigcirc	\bigcirc	\bigcirc	O
Slideline SL／Proline PL with brakes									
Aktiv brake									
Braking force（no pressure，brake surface dry）［ N ］	\times	X	\times	\bigcirc	O	\bigcirc	0	\bigcirc	\bigcirc
Passiv brake Multibrake									
Braking force（no pressure，brake surface dry）［N］	X	X	X	0	0	0	0	0	0
Accessories									
Magnetic switches									
RS（closer，opener）	\bigcirc	O							
Elektronic switches ES（PNP，NPN）	0	\bigcirc							
Displacement measuring systems									
SFI－incremental	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SFA－absolute	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc
Motor package（stepper／servo）	0	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
Gearbox（integrated planetary gearbox）	0	\bigcirc	\bigcirc	－	－	－	－	－	－
Mountings									
Clevis Mounting	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
End Cap Mounting／Mid－section Support	0	0	\bigcirc						
Inversion Mounting	\times	\times	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Adapter Profile／T－Nut Profile	0	\bigcirc	0	0	0	0	\bigcirc	0	\bigcirc
Multi－Axis Connection System									
Adapter Plates	0	0	\bigcirc	0	0	0	0	\bigcirc	0
Intermediate Drive Shafts	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Special Drives									
Clean Room Cylinders	X	\times	\times	\times	\times	\times	\times	X	\times

I＝Standard version
$\mathrm{O}=$ Option
$\times=$ Currently not available
＊＝other temperature ranges on request
米米＝exc．safety clearance from mechanical end position other stroke lengths on request
${ }^{1}$ ）＝Electric Linear Drive（Belt，with integrated Roller Guide／or Recirculating Ball Bearing Guide －Option：Bi－parting
${ }^{2}$ ）$=$ Electric Linear Drive（Belt）
${ }^{3}$ ）＝Electric Linear Drive（Belt Bi－parting）
${ }^{4}$ ）$=$ Electric Linear Drive（Ball screw）
${ }^{5}$ ）＝Electric Linear Drive（Trapezoidal Screw）
${ }^{6}$ ）＝Electric Linear Drive（Trapezoidal Screw with extending Rod）
${ }^{7}$ ）＝Electric Linear Drive（Ball screw with extending Rod）

Electric Linear Drive Systems,Modular Components - Overview

$\begin{gathered} \text { OSP-E25 } \\ \left.-S^{4}\right) \end{gathered}$	$\begin{gathered} \text { OSP-E32 } \\ \left.-S^{4}\right) \end{gathered}$	$\begin{gathered} \text { OSP-E50 } \\ \left.-S^{4}\right) \end{gathered}$	$\begin{gathered} \hline \text { OSP-E25 } \\ \text {-SBR }^{7} \text {) } \end{gathered}$	$\begin{aligned} & \hline \text { OSP-E32 } \\ & \text {-SBR }{ }^{\top} \text {) } \end{aligned}$	$\begin{aligned} & \hline \text { OSP-E50 } \\ & \text {-SBR }{ }^{7} \text { (} \end{aligned}$
250	600	1500	260	550-1090	750-1680
0,25	0,5	1,25	0,25	0,25-0,5	0,25-1,25
]	\square]]	\square	\square
1-1100	1-2000	1-3200	1-500	1-500	1-500
$-20-+80$	$-20-+80$	$-20-+80$	$-20-+80$	$-20-+80$	$-20-+80$
X	X	X	X	X	X
O	\bigcirc	O	-	-	-
500	1200	3000	-	-	-
12	25	80			
2	8	16	-	-	-
8	16	32	-	-	-
675	925	2000	-	-	-
34	60	180			
14	29	77	-	-	-
34	60	180	-	-	-
986	1348	3582	-	-	-
44	84	287	-	-	-
19	33	128	-	-	-
44	84	287	-	-	-
910-1190	1400-2300	3000-4000	-	-	-
63-175	70-175	250-350	-	-	-
14-20	20-50	90-140	-	-	-
63-175	70-175	250-350	-	-	-
1650-2500	1650-2500	4400-8000	-	-	-
115	145	500			
75	90	375	-	-	-
90	115	355			
\bigcirc	\bigcirc	\bigcirc	-	-	-
0	\bigcirc	\bigcirc	-	-	-
0	0	0	-	-	-
0	0	0	-	-	-
0	0	0	0	\bigcirc	0
0	0	0	0	0	0
0	0	0	-	-	-
0	0	0	-	-	-
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
-	-	-	-	-	-
\bigcirc	\bigcirc	\bigcirc	-	-	-
\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	-	-	-
0	0	0	0	0	0
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc	0	0	0	\bigcirc
\times	\times	\times	\times	\times	\times

A COMPLETE SYSTEM
 - SIX DRIVE OPTIONS FOR ALL REQUIREMENTS

Belt-Driven with Integrated Roller Guide or integrated
Recirculating Ball Bearing Guide

Belt-Driven with Integral Guidance
Series OSP-E..B

Bi-Parting Belt-Driven
for perfectly synchronized bi-parting movements
Series OSP-E..BP

Screw-Driven with extending rod
Series OSP-E..SR (with Trapzoidal Screw)
Series OSP-E..SBR (with Ball Screw)

STANDARD VERSIONS, OPTIONS AND ACCESSORIES

Description	Belt-Driven - Basic Versions		
	Belt-Driven with Integrated Roller Guide	Belt-Driven	Bi-Parting Belt-Driven
Standard Versions		$\square_{U} \backsim \square$	$\square_{U} \square \square \square$
Options	- Bi-Parting - Integrated Planetary Gearbox - Actuating Direction	- Drive Shaft Options	- Drive Shaft Options
Mountings			
Clevis Mounting	-	0	0
End Cap Mounting	0	0	0
Mid-Section Support	0	0	0
Inversion Mounting	-	0	0
Accessories			
Proximity Sensors	0	0	0
Motor Mountings	0	0	0
Linear Guides	0	0	0
Multi-Axis Connection System	0	0	0

Description	Screw-Driven - Basic Versions	
	Ball Screw-Driven	Screw-Driven with extending Rod - with Ball Screw
Standard Versions	$\square \square \square$?
Options	- Pitch options	- Flange Mounting - Trunnion Mounting - Piston Rod Mountings
Mountings		
Clevis Mounting	0	-
End Cap Mounting	0	0
Mid-Section Support	0	0
Inversion Mounting	0	-
Accessories		
Magnetic Switches	0	0
Motor Mountings	0	0
Linear Guides	0	-
Multi-Axis Connection System	0	0

APPLICATION EXAMPLES FOR ELECTRIC LINEAR DRIVE SYSTEMS

Auto Handling

- high speed pick and place movements

Mechanical Handling

- parallel operation of actuators on a
vertical handling
system

Spray Coating

- synchronized high speed bi-parting movements

Material Handling Systems

- vertical and horizontal transfer movements

Profile Cutting Machines

- intricate profile movements of water jets and lasers

Automatic Doors and

 Guards- simple bi-parting operation

Robotic Installations

- traverse of robots between work stations

Milling Machines

- precise slow speed feeding in 2-axis

Conveyor Systems

- simple cross-transfer actuators

Spraying Equipment

- precision reciprocating action

Linear Actuator with Toothed Belt and Integrated Guide

- with Roller Guide
- with Recirculating Ball Bearing Guide

Series OSP-E..BHD

Contents

Description	Page
Overview	$11-14$
Version with Roller Guide	
Technical Data	$15-17$
Dimensions	18,23
Version with Recirculating Ball Bearing Guide	
Technical Data	$19-21$
Dimensions	22,23

ELECTRIC LINEAR ACTUATOR FOR HEAVY DUTY APPLICATIONS

The latest generation of high capacity linear drives, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into machine constructions by virtue of extremely adaptable mountings.

Linear Actuator with Toothed Belt and Integrated Roller Guide or Integrated Recirculating Ball Bearing Guide for high force output

Advantages:

- Accurate path and position control

■ High force output
■ High speed operation
■ High load capacity
■ Easy installation
■ Low maintenance
■ Ideal for multi-axis applications

Features:
■ Integrated roller guide or integrated recirculating ball bearing guide
■ Complete motor and control packages

- Optional integrated planetary gearbox
- Diverse range of multi-axis connection parts
Diverse range of accessories and mountings
- Special options available

hardened steel track with high

Optional Integrated
PLANETARY GEARBOX

- Highly compact and rigid solution fully integrated in the drive end housing
- Purpose designed for the BHD series
- Available with three standard ratlos (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

OPTION
Hollow shaft with keyway

Steel runner block with integrated scraper system and grease nipples

MULTI-AXIS
A wide range of adapter plates and intermediate drive shafts simplify engineering and installation
The dovetailed mounting rails of the new linear actuator expand its function into that of a universal system carrier.
Modular system components are simply clamped on.

SERIES OSP-E, BELT DRIVES WITH INTEGRATED GUIDE

STANDARD VERSIONS

OSP-E..BHD
Version with Roller Guide Page 15
Version with Recirculating Ball Bearing Guide
Page 19
Standard carrier with integrated roller guide. Dovetail profile for mounting of accessories and the actuator itself.

BASIC ACTUATOR OPTIONS

BI-PARTING VERSION
Page 18
For perfectly synchronised bi-parting movements.

DRIVE SHAFT OPTIONS
ACTUATING DIRECTION
Page 144
Important in parallel operations, e.g.
with intermediate drive shaft

(Standard)

(Standard -Bi-Parting Version)

INTEGRATED PLANETARY GEARBOX

Page 23

For required torque and speed reduction

CLAMP SHAFT WITH
CONNECTION SHAFT
For connection to connecting shaft (Page 38)

HOLLOW SHAFT WITH KEYWAY For close coupling of motors and external gears

ACCESSORIES

END CAP MOUNTING
Page 40
For mounting the drives on the end cap

MID-SECTION SUPPORT

Page 41
For supporting long actuators or mounting the actuator on dovetail grooves.

MAGNETIC SWITCHES SERIES RS AND ES

Page 130

For electrical sensing of end of stroke and intermediate carrier positions. Schlittens.

MOTOR MOUNTINGS

Page 44
For linear drive with clamp shaft

Page 25

For connection of linear drives in multi-axis systems. Carrier to carrier or carrier to profile and connecting shaft for parallel drive arrangements are available.

Characteristics				
	acteristics	Symbol	Unit	Description
General Futures				
Type				Belt-Driven Linear Actuator with integrated roller guide
Series				OSP-E..BHD/OSP-E..BHD-BP
Mounting				See drawings
Ambient Temperature range		$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -30 \\ & +80 \end{aligned}$
Weight (mass)			kg	Seetable
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Belt wheels			Aluminium
	Rails			Aluminium
	Tracks			High alloy spring steel
	Roller casettes			Roller bearing steel in aluminium casing
	Sealing band			Hardened stainless steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Encapsulation class			IP	54

Weight (mass) kg and Inertia

Series	Weight (mass) $) \mathrm{kg}]$			Inertia $\left[\times 10^{-6 /} / \mathrm{kgm}^{2}\right]$	
	At stroke 0m	Add per metre stroke	Moving mass	At stroke 0m	Add per metre
OSP-E25BHD	3.8	4.3	1.0	984	197
OSP-E32BHD	7.7	6.7	1.9	3498	438
OSP-E50BHD	22.6	15.2	4.7	19690	1489
OSP-E25BHD-BP	5.7	4.3	2.0	1805	197
OSP-E32BHD-BP	11.3	6.7	3.8	6358	438
OSP-E50BHD-BP	31.7	15.2	9.4	34274	1489

Installation Instructions

Use the threaded holes in the end cap for mounting the linear actuator. needed using the maximum allowable unsupported length graph on page 17. At least one end cap must be secured to prevent axial sliding when midsection support is used.

Maintenance

All moving parts are lifetime lubricated. We recommend a check of the linear actuator after an operation time of 12 months of operation or 3000 km , depending on the type of application. Please see separate instructions.

Commissioning

The products in this data sheet should not be operated until the machine/ application in which they are used has passed necessary inspection.

Series OSP-E..BHD Size 25, 32, 50

- SYSTEM

Standard Versions:

- Standard carrier with integrated roller guide
- Dovetail profile for mounting of accessories and the actuator itself
- Clamp shaft

Special Versions:

- Bi-parting version for synchronised movements (OSP-E..BHD-BP).
- Integrated planetary gearbox.
- Drive shaft/Actuating direction
- Clamp shaft with connection shaft (for use in Mutli-Axis systems with connecting shaft)
- Hollow shaft with keyway

Sizing Performance Overview Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended:

1. Calculate the static and the dynamic moments [Nm] created by the load $L[N]$, the distance r [m] and the acceleration a $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ in all directions (M, M_{s} and M_{v}) according to the diagram below.
2. Make a preliminary choice and get the calculation factors from the table.
3. Check maximum allowable torque on the drive shaft (pay attention to the note under the table). If the value is lower than required, overview the moving profile or select if possible a bigger unit.
4. Before sizing and specifying the motor, the rms torque must be calculated using the cycle time of the application.
5. Check that maximum allowable unsupported length is not exceeded (see page 17).

Performance Overview

Characteristics	Unit	Description		
Series		OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. speed	$[\mathrm{m} / \mathrm{s}]$	10	10	10
Linear motion per revolution, drive shaft	$[\mathrm{mm}]$	180	240	350
Max. rpm. drive shaft	$\left[\mathrm{min}^{-1}\right]$	3000	2500	1700
Max. effective $\leq 1 \mathrm{~m} / \mathrm{s}:$ action force $\quad 1-3 \mathrm{~m} / \mathrm{s}:$ F_{A} at speed $>3-10 \mathrm{~m} / \mathrm{s}:$ $[\mathrm{N}]$	$[\mathrm{N}]$	1070	1870	3120
No-load torque	$[\mathrm{Nm}]$	1.2	1560	2660
Max. acceleration/deceleration	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	40	1030	1940
Repeatability	$[\mathrm{mm} / \mathrm{m}]$	± 0.05	± 0.2	3.2
Max. standard stroke length	$[\mathrm{mm}]$	7000	7000	7000

Maximum Allowable Torque on Drive Shaft Speed and Stroke

OSP-E25BHD				OSP-E32BHD				OSP-E50BHD			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed $[\mathrm{m} / \mathrm{s}]$	$\begin{array}{\|l} \text { Torque } \\ {[\mathrm{Nm}]} \end{array}$	$\left\lvert\, \begin{aligned} & \text { Stroke } \\ & \text { [m] } \end{aligned}\right.$	Torque [Nm]	Speed [m/s]	Torque [Nm]	$\begin{aligned} & \text { Stroke } \\ & {[\mathrm{m}]} \end{aligned}$	$\begin{aligned} & \text { Torque } \\ & {[\mathrm{Nm}]} \end{aligned}$
1	31	1	31	1	71	1	71	1	174	1	174
2	28	2	31	2	65	2	71	2	159	2	174
3	(25)	3	31	3	59	3	60	3	153	3	138
4	23	4	25	4	56	4	47	4	143	4	108
5	22	5	(21)	5	52	5	38	5	135	5	89
6	21	6	17	6	50	6	32	6	132	6	76
7	19	7	15	7	47	7	28	7	126	7	66
8	18			8	46			8	120		
9	17			9	44			9	116		
10	16			10	39			10	108		

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.
Example above: OSP-E25BHD-stroke 5 m , required speed $3 \mathrm{~m} / \mathrm{s}$ from table T2;
speed $3 \mathrm{~m} / \mathrm{s}$ gives 25 Nm and stroke 5 m gives 21 Nm .
Max. torque for this application is 21 Nm .
When sizing Bi-parting units the stroke is the ordering stroke, see page 8.

Maximum Allowable Loadings

Series	Max. applied load $\mathrm{L}[\mathrm{N}]$			Max. moments $[\mathrm{Nm}]$ $\operatorname{OSP-E25BHD}$			986	64	11	M_{v}
OSP-E32BHD	1348	115	19	115						
OSP-E50BHD	3704	365	87	365						

$\frac{L}{L(\max)}+\frac{M}{M(\max)}+\frac{M_{s}}{M_{s}(\max)}+\frac{M_{v}}{M_{v}(\max)} \leq 1$

The total of the loads must not exceed 1 under any circumstances.

Maximum Allowable Unsupported Length - Placing of Mid-Section Support

* For Bi-parting version the max. load (L) is the total load of both carriers $\mathrm{L}=\mathrm{L}_{\text {carrier 1 }}+\mathrm{L}_{\text {carrier 2 }}$
$\mathrm{k}=$ Max. allowable distance between mountings/mid-section support for a given load L

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01% of distance k

Maximum Allowable Unsupported Length Stroke Length

Stroke Length

The stroke lengths of the linear actuators are available in multiples of 10 mm up to 7000 mm

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm .

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.
For advice, please contact your local HOERBIGER-ORIGA technical support department.

Options - Bi-Parting Version
 Series OSP-E25BHD-BP, -E32BHD-BP, -E50BHD-BP

*** Note:

The mechanical end position must not be used as a mechancial end stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local HOERBIGER-ORIGA representative.

Dimension Table (mm)

Series	A	B	C	E	G	H	J	K	M	S	V	X	Y	CE	CF	EC	EF	FB	F	KF	KJ	KM ${ }_{\text {min }}$	KM ${ }_{\text {rec. }}$	KN	0	KP	KR	KS*	KT	KU	ZZ
OSP-E25BHD	218	88	93	25	M5	10	178	21.5	31	85	64	40	M6	42	52.5	79	27	92	39.5	49	-	210	250	34	21.7	30	$16^{\text {h7 }}$	16^{H7}	82	M8	8
OSP-E32BHD	262	112	116	28	M6	12	218	28.5	38	100	64	40	M6	56	66.5	100	36	116	51	62	12	250	300	53	30	30	h7	$22^{H 7}$	106	10	10
OSP-E50BH	34	147	175	18	M6	12	26	43	49	124	90	60	6	87	92.5	158	70	64	77	79	19	295	350	75	41	35	${ }^{\text {h7 }}$	32^{H7}	144	2	10

[^0]| Characteristics | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Characteristics | | Symbol | Unit | Description |
| General Features | | | | |
| Type | | | | Belt-Driven Linear Actuator with integrated Recirculating Ball Bearing Guide |
| Series | | | | OSP-E..BHD/OSP-E..BHD-BP |
| Mounting | | | | See drawings |
| Ambient Temperature range | | $\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$ | $\begin{array}{\|l\|} \hline{ }^{\circ} \mathrm{C} \\ \hline{ }^{\circ} \\ \hline \end{array}$ | $\begin{array}{r} -30 \\ +80 \\ \hline \end{array}$ |
| Weight (mass) | | | kg | Seetable |
| Installation | | | | In any position |
| | Slotted profile | | | Extruded anodized aluminium |
| | Toothed belt | | | Steel-corded polyurethane |
| | Belt wheels | | | Aluminium |
| | Rail | | | Steel |
| | Track | | | hardened steel track with high precision, accuracy class H |
| | Runner block | | | Steel runner block with integrated scraper system, grease nipples, preloaded 0.02 xC , accuracy H (N for Ø25) |
| | Sealing band | | | Hardened stainless steel |
| | Screws, nuts | | | Zinc plated steel |
| | Mountings | | | Zinc plated steel and aluminium |
| Encapsulation class | | | IP | 54 |

Weight (mass) kg and Inertia

Series	Weight (mass) At stroke 0 m	[kg] Add per metre stroke	Moving mass	Ineria $\times 10$ A stroke Om	gm^{2}) Add per metre stoke	Add perkg Mass
OSP-E25BHD	4.3	3.7	1.5	1229	227	821
OSP-E32BHD	8.8	7.8	2.6	3945	496	1459
OSP-E50BHD	26	17	7.8	25678	1738	3103
OSP-E25BHD-BP	6.7	3.7	2.8	2353	227	821
OSP-E32BHD-BP	13.5	7.8	5.2	7733	496	1459
OSP-E50BHD-BP	40	17	15	49180	1738	3103

Installation Instructions

Use the threaded holes in the end cap for mounting the linear actuator. Check if mid-section supports are needed using the maximum allowable unsupported length graph on page 21. At least one end cap must be secured to prevent axial sliding when midsection support is used.
and Integrated Recirculating Ball Bearing Guide

Series OSP-E.BHD
Size 25, 32, 50

Standard Versions:

- Standard carrier with integrated recirculating ball bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Clamp shaft

Special Versions:

- Bi-parting version for synchronised movements (OSP-E..BHD-BP).
- Integrated planetary gearbox.
- Drive shaft/ Actuating direction
- Clamp shaft with connection shaft (for use in Multi-Axis systems with connecting shaft)
- Hollow shaft with keyway

Sizing Performance Overview Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended:

1. Calculate the static and the dynamic moments [Nm] created by the load $L[N]$, the distance r [m] and the acceleration a $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ in all directions (M, M_{s} and M_{v}) according to the diagram below.
2. Make a preliminary choice and get the calculation factors from the table.
3. Check maximum allowable torque on the drive shaft (pay attention to the note under the table).
If the value is lower than required, overview the moving profile or select if possible a bigger unit.
4. Before sizing and specifying the motor, the rms torque must be calculated using the cycle time of the application.
5. Check that maximum allowable unsupported length is not exceeded (see page 21).

Performance Overview

Characteristics	Unit	Description		
Series		OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. speed	[m/s]	$5^{1)}$	$5^{1)}$	$5^{1)}$
Linear motion per revolution, drive shaft	[mm]	180	240	350
Max. rpm. drive shaft	[min^{-1}]	1700	1250	860
Max. effektive $<1 \mathrm{~m} / \mathrm{s}$:	[N]	1070	1870	3120
action force F_{A} 1-3 m/s:	[N$]$	890	1560	2660
at speed $\quad>3 \mathrm{~m} / \mathrm{s}$:	[N$]$	550	1030	1940
No-load torque	[Nm]	1.2	2.2	3.2
Max. acceleration/deceleration	[m/s ${ }^{2}$]	50	50	50
Repeatability	[mm / m]	± 0.05	± 0.05	± 0.05
Max. standard stroke length	[mm]	5700²)	5600^{2}	5500^{2}

${ }^{1)}$ up to $10 \mathrm{~m} / \mathrm{s}$ on request
${ }^{2)}$ longer strokes on request
Maximum Allowable Torque on Drive Shaft
Speed and Stroke

OSP-E25BHD				OSP-E32BHD				OSP-E50BHD			
$\begin{aligned} & \text { Speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Torque } \\ & {[\mathrm{Nm}]} \end{aligned}\right.$	Stroke [m]	$\left\lvert\, \begin{aligned} & \text { Torque } \\ & {[\mathrm{Nm}]} \end{aligned}\right.$	$\begin{aligned} & \text { Speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	Torque $[\mathrm{Nm}]$	$\begin{aligned} & \text { Stroke } \\ & {[\mathrm{m}]} \end{aligned}$	Torque $[\mathrm{Nm}]$	Speed $[\mathrm{m} / \mathrm{s}]$	Torque [Nm]	$\begin{aligned} & \text { Stroke } \\ & {[\mathrm{m}]} \end{aligned}$	Torque $[\mathrm{Nm}]$
1	31	1	31	1	71	1	71	1	174	1	174
2	28	2	31	2	65	2	71	2	159	2	174
3	25	3	31	3	59	3	60	3	153	3	138
4	23	4	25	4	56	4	47	4	143	4	108
5	22	5	(21)	5	52	5	38	5	135	5	89

Important:
The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.
Example above: OSP-E25BHD-stroke 5 m , required speed $3 \mathrm{~m} / \mathrm{s}$ from table T2;
speed $3 \mathrm{~m} / \mathrm{s}$ gives 25 Nm and stroke 5 m gives 21 Nm .
Max. torque for this application is 21 Nm .
When sizing Bi-parting units the stroke is the ordering stroke, see page 22.

$M=F \cdot r$
Bending moments are calculated from the centre of the linear actuator and F indicates actual force
$\mathrm{M}=\mathrm{M}_{\text {stat }}+\mathrm{M}_{\text {dyn }}$
$M_{s}=M_{s, \text { stat }}+M_{s, \text { dyn }}$
$M_{v}=M_{v, \text { stat }}+M_{v, \text { dyn }}$

Maximum Allowable Loadings

Series	Max. applied load			Max. moments [Nm] L1[N]			L2[N]	M	M_{s}	M_{v}
OSP-E25BHD	3000	2000	500	50	500					
OSP-E32BHD	10000	5000	1000	120	1400					
OSP-E50BHD	15000	12000	1800	180	2500					

If multiple forces and moments act upon the actuator simultaneously, the following equation applies.
$\frac{L 1}{L 1(\max)}+\frac{L 2}{L 2(\max)}+\frac{M}{M(\max)}+\frac{M_{s}}{M_{s}(\max)}+\frac{M_{v}}{M_{v}(\max)} \leq 1$

The total of the loads must not exceed 1 under any circumstances.

* For Bi-parting version the max. load (L) is the total load of both carriers

$$
\mathrm{L}=\mathrm{L}_{\text {carrier 1 }}+\mathrm{L}_{\text {carrier 2 }}
$$

$\mathrm{k}=$ Max. allowable distance between mountings/mid-section support for a given load L

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01% of distance k

Maximum Allowable Unsupported Length

Stroke Length

Stroke Length

The stroke lengths of the linear actuators are available in multiples of 10 mm up to 5700 mm

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm .

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.
For advice, please contact your local HOERBIGER-ORIGA technical support department.

Options - Bi-Parting Version
 Series OSP-E25BHD-BP, -E32BHD-BP, -E50BHD-BP

*** Note:
The mechanical end position must not be used as a mechancial end stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm .
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local HOERBIGER-ORIGA representative.

Dimension Table (mm)

Series	A	B	C	E	G	H		K	M	S	V	X	Y	CE	CF	EC	EF	FB	FH	KF	KJ	KM ${ }_{\text {min }}$	KM ${ }_{\text {rec. }}$	KN	KO	KP	KR	KS*	KT	KU	ZZ
OSP-E25BHD	218	88	93	25	M5	10	178	21.5	31	85	64	40	M6	42	52.5	79	27	92	39.5	49	8	210	250	34	21.7	30	$16_{\text {h7 }}$	16^{H7}	82	M8	8
OSP-E32BHD	262	112	116	28	M6	12	218	28.5	38	100	64	40	M6	56	66.5	100	36	116	51.7	62	12	250	300	53	30	30	$22_{\text {h7 }}$	$22^{\text {H7 }}$	106	M10	10
OSP-E50BHD	347	147	175	18	M6		288	43	49	12	90	60	M6	87	92.5	158	70	164	77	79.5		354	400	75	41	35	$32 \mathrm{h7}$	$32^{\text {H7 }}$	144	M12	10

[^1]Series OSP-E..BHD - with optional Integrated Planetary Gearbox

Performance Overview

Characteristics		Unit	Description		
			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Ratio (1-stage)	i		$3 / 5 / 10$	$3 / 5 / 10$	$3 / 5 / 10$
Max axial load	$\mathrm{F}_{\text {amax }}$	$[\mathrm{N}]$	1550	1900	4000
Torsional rigidity (i=5)	$\mathrm{C}_{\mathrm{t} .21}$	$[\mathrm{Nm} /$ arcmin $]$	3.3	9	24
Torsional rigidity (i=3/10)	$\mathrm{C}_{\mathrm{t} .21}$	$[\mathrm{Nm} /$ arcmin $]$	2.8	7.5	20.5
Torsional backlash	J_{t}	$[\mathrm{arcmin}]$	<12	<12	<12
Linear movement per rotation of drive shaft		$[\mathrm{mm}]$	220	280	360
Nominal input speed	$\mathrm{n}_{\text {nom }}$	$\left[\mathrm{min}^{-1}\right]$	3700	3400	2600
Max input speed	$\mathrm{n}_{1 \max }$	$\left[\mathrm{~min}^{-1}\right]$	6000	6000	6000
No-load running torque at Nominal input speed	T_{012}	$[\mathrm{Nm}]$	<0.14	<0.51	<1.5
Lifetime		$[\mathrm{h}]$	20000	20000	20000
Efficiency (1-stage)	η	$[\%]$	>97	>97	>97
Noise level $\left(\mathrm{n}_{1}=3000\right.$ min $\left.^{-1}\right)$	L_{PA}	$[\mathrm{db}]$	<70	<72	<74

Dimensions

(For drive shaft/actuating direction options, see information on page 144).

Dimension Table (mm) and additional Weight (kg)

Series	NA	NB	NC	Weight (mass) [kg]
OSP-E25BHD	49	43	76	2.6
OSP-E32BHD	62	47	92	4.9
OSP-E50BHD	79.5	49.5	121	9.6

Integrated Planetary Gearbox

Features

- Highly compact and rigid solution fully integrated in the drive end housing
- Purpose designed for the BHD series
- Available with three standard ratios (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

Please contact your local HOERBIGER-ORIGA technical support for available motor flanges.

For motors and controllers, see separate catalogue.

Material:
Aluminium (AL-H) / Steel (St-H)

Standard Version:

- Gearbox on opposite side to carrier

Special Version:

- Gearbox on same side as carrier

Note:

When ordering, specify type of motor and model for correct motor flange.

Multi-Axis Connection System for Linear Drive Systems Series OSP-E

Contents

Description	Page
Overview	$26-28$
Adapter plates - Dimensions/Order Instructions	$29-37$
Intermediate Drive Shafts - Dimensions/Order Instructions	38

The
System Concept

MULTI-AXIS CONNECTION SYSTEM SIMPLIFIES ENGINEERING AND INSTALLATION

A completely new system for easy connection of OSP-E linear drives
in multi-axis systems.

MULTI-AXIS CONNECTIONS

With a highly adaptable system for connection of linear drives in multi-axis arrangements,
HOERBIGER-ORIGA offers design engineers complete flexibility.

A wide range of adapter plates, profile mountings and intermediate drive shafts simplify engineering and installation.
The connection system enables actuators to be
mounted in carrier to carrier; carrier to profile; carrier to end cap mounting; and carrier to end cap configurations.

Developed for the heavyduty belt drive series OSP-E..BHD, the system provides cross-connection with the same series and also other linear drive series in the ORIGA SYSTEM PLUS range.

* For available standard combinations, see page 28

Adapter Plate Type MA1-...* For connecting carrier to carrier, carrier to profile mounting or carrier to end cap mounting.	Combination C	Combination P^{*}	
	Combination C*	Combination P^{\star}	Combination EM*
Adapter Plate Type MA2-...* For connecting carrier to end cap.			
Adapter Plate Type MA3-..* For connecting 90° carrier to profile mounting or carrier to end cap mounting.	Combination P	Combination P^{*}	
	Combination EM*		
Intermediate Drive Shaft Type MAS-.			

Available Mounting Combinations
Combination C^{*}

Series	Type	OSP-E..BHD/BHD-BP												OSP-E..B/S/BP/P*/SBR											
		-25				-32				-50				-25				-32				-50			
		C^{1}	P^{2}	E^{3}	$E M^{4}$	C^{5}	P^{6}	E^{7}	EM^{8}	C^{9}	P^{10}	E^{11}	$E M^{12}$	C^{13}	P^{14}	E^{15}	$E M^{16}$	C^{17}	P^{18}	E^{19}	EM ${ }^{20}$	C^{21}	P^{22}	E^{23}	$E M^{24}$
OSP-E25BHD	MA1-25	-	\bullet		\bullet	\bullet	\bullet		-					-	\bullet		-	-	-		-	-	\bullet		-
OSP-E32BHD	MA1-32	-	\bullet		\bullet	-	-		-	\bullet	-		-					-	-		-	-	-		\bullet
OSP-E50BHD	MA1-50	-	\bullet		-	-	\bullet		\bullet	\bullet	-		-					\bullet				\bullet	-		-
OSP-E25BHD	MA2-25			\bullet				-								-				-				-	
OSP-E32BHD	MA2-32			\bullet				-				-								\bullet				-	
OSP-E50BHD	MA2-50			\bullet				-				\bullet												-	
OSP-EBHD25	MA3-25		-		-		-		-						\bullet		-		-		-		-		-
OSP-EBHD32	MA3-32		\bullet		-		-		-		-		-						-		-		-		-
OSP-EBHD50	MA3-50		\bullet		-		\bullet		-		-		-										\bullet		-
Abbreviations: C = MAn to Carrier, $\mathbf{P}=$ MAn to Profile mounting, $E=$ MAn to End cap, EM = MAn to End cap mounting ($n=1,2,3$) * = The mounting plates can also be used to mount the OSP-P pneumatic rodless actuator to the BHD Values in superscript refer to corresponding adapter plate dimensions on pages 29-37. e.g. Dimensions corresponding to combination option "C" for adapter plate MA1-50 connected to an OSP-E32BHD carrier are shown with Superscript number ${ }^{5}$ on the MA1-50 adapter plate on page 31.																									

Other combinations on request.

Adapter
 Plate
 for OSP-E25

Type: MA1-25

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
OSP-E32BHD actuator.
Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA1-25	0.7	12269

- SYSTEM

Type: MA1-32

Dimensions (mm) Adapter Plate Type MA1-32

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{5}$, corresponds to the option " C " for OSP-E32BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA1-32	1.0	$\mathbf{1 2 2 7 2}$

Dimensions (mm) Adapter Plate Type MA1-50

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28. e.g. Dimensions with Superscript number ${ }^{5}$, corresponds to the option "C" for OSP-E32BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA1-50	1.1	$\mathbf{1 2 2 7 5}$

Adapter Plate
 for OSP-E50

Type: MA1-50
Ј年

Adapter Plate for OSP-E25

Type: MA2-25

Dimensions (mm) Adapter Plate Type MA2-25

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{3}$, corresponds to the option "E" for OSP-E25BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA2-25	0.6	$\mathbf{1 2 2 7 0}$

Dimensions (mm) Adapter Plate Type MA2-32

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{3}$, corresponds to the option "E" for OSP-E25BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA2-32	1.1	12273

Adapter Plate

 for OSP-E50- SYST
- PLUS

Type: MA2-50

Dimensions (mm) Adapter Plate Type MA2-50

$\stackrel{1}{4}$

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{3}$, corresponds to the option "E" for OSP-E25BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA2-50	1.4	12276

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA3-25	1.3	$\mathbf{1 2 2 7 1}$

Adapter Plate for OSP-E25

Type: MA3-25

Adapter Plate

 for OSP-E32Type: MA3-32

Dimensions (mm) Adapter Plate Type MA3-32

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{4}$, corresponds to the option "EM" for OSP-E25BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA3-32	1.8	$\mathbf{1 2 2 7 4}$

Dimensions with Superscript values, refer to the corresponding available options detailed on page 28.
e.g. Dimensions with Superscript number ${ }^{4}$, corresponds to the option "EM" for OSP-E25BHD actuator.

Order Instructions and Weight

Description	Weight(mass) [kg]	Order No.
Adapter Plate Type MA3-50	2.3	12277

Adapter
 Plate
 for OSP-E50

-ORIGA

Type: MA3-50

Multi-Axis
 Accessories
 Complete Intermediate Drive Shaft

Size 25, 32, 50

OSP
 - ORIGA

- SYSTEM

For Linear Drive

- Series OSP-E..BHD

Note:

For Series OSP-E..BHD with integrated gearbox, please contact your local HOERBIGER-ORIGA technical support.

For other series on request.

Features

Backlash-free shaft connection under pre-stress
Design up to speed 1500 rpm
Double cardan connection for larger displacements
Easy to mount
Material:
Aluminium (AL-H) / Steel (St-H)
Polyurethane/Hytrel

For Clamp Shaft with Connection Shaft Series OSP-E25BHD to E50BHD, Type MAS-

For Hollow Shaft with Keyway
Series OSP-E25BHD to E50BHD, Type MAS-

Critical Speed v. for Coupling Length

1 = For Clamp Shaft with Connection Shaft 2 = For Hollow Shaft with Keyway

Characteristics / Dimension Table (mm)

Series	Type	Max Torque $[\mathrm{Nm}]^{\star *}$	CE	D_{H}	KB***	$\mathrm{L}_{\text {zR }}$	$\mathrm{L}_{\mathrm{R} 1}$	d_{R}	Order No. * For Clamp shaft	For Hollow shaft
OSP-E25BHD	MAS-25	39	42	55	$16_{\text {h7 }}$	<3000	$L_{\text {ZR }}-112$	25×2.5	12305-....	12281-...
OSP-E32BHD	MAS-32	42	56	55	$22_{\text {h7 }}$	<3000	$L_{\text {LR }}-126$	25×2.5	12306-..	12282-.
OSP-E50BHD	MAS-50	102	87	65	$32_{\text {h7 }}$	<3000	$L_{\text {zR }}-167$	35×4.0	12307-....	12283-..

* Complete with L_{R1} length in mm . Example: 12305-1200 ($\mathrm{L}_{\mathrm{R} 1}$ length $=1200 \mathrm{~mm}$)
** Forhigher torque requirement, please contact your local

Accessories for BHD Linear Drive Systems Series OSP-E..BHD

Contents

Description	Page
End Cap Mountings	40
Mid-Section Support	41
Adaptor Profile	42
T-Nut Profile	43
Motor Mountings Coupling Housing	44
Profile Mountings	45

Linear Drive Accessories

End Cap Mountings
Size 25, 32, 50

For Linear Drive with integrated Roller Guide

- Series OSP-E..BHD

On the end-face of each end cap there are eight threaded holes for mounting the actuator.

Material:
Anodized aluminium.
The mountings are supplied in pairs.

Series OSP-E50BHD: Type C50

Dimension Table (mm)

Series	Type	E	$\varnothing U$	AB	AC	AD	AE	AF	AG	DG	Order No. *
OSP-E25BHD	C25	27	6.6	52	16	25	25	22	-	91	$\mathbf{1 2 2 6 6}$
OSP-E32BHD	C32	36	9	64	18	25	25	30	-	114	$\mathbf{1 2 2 6 7}$
OSP-E50BHD	C50	70	9	48	12.5	30	30	48	128	174	$\mathbf{1 2 2 6 8}$

Linear Drive Accessories
 Mid-Section Support

Size 25, 32, 50

For Linear Drive with intergrated Roller Guide

- Series OSP-E ..BHD

Note on Types E1 and D1:
The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the center of the actuator is different.

Stainless steel version on request

Series OSP-E25BHD to E50BHD: Type E1
(Mounting from above / below with 2 through holes)

Series OSP-E25BHD to E50BHD: Type D1
(Mountings from below with 2 screws)

Dimension Table (mm)

Series	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	RE	Order No. Type E1 Type D1	
OSP-E25	M5	5.5	22	27	38	26	40	47.5	36	50	34.5	8	10	41.5	28.5	49	36	26	20009	20008
OSP-E32	M5	5.5	30	33	46	27	46	54.5	36	50	40.5	10	10	48.5	35.5	57	43	32	20158	20157
OSP-E50	M6	7	48	40	71	34	59	67	45	60	52	10	11	64	45	72	57	44	20163	20162

Linear Drive Accessories
 Adaptor Profile

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Adaptor Profile OSP

- A universal attachment for mounting of additional items
- Solid material

Dimensions Series OSP-E..BHD

Dimension Table (mm)

Series	A	B	C	D	E	F	L	X	RE	Order No.	
Standard	Stainless										
OSP-E25	16	23	32	M5	10.5	30.5	50	36	26	20006	20186
OSP-E32	16	23	32	M5	10.5	36.5	50	36	32	20006	20186
OSP-E50	20	33	43	M6	14	52	80	65	44	20025	20267

Dimensions Series OSP-E

Linear Drive Accessories

T-Nut Profile
Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

T-Nut Profile OSP

- A universal attachment for mounting with standard T-Nuts

Dimensions Series OSP-E..BHD

Dimension Table (mm)

| Series | RE | TA | TB | TC | TD | TE | TF | TG | TH | TL | Order No.
 Standard | Stainless |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| OSP-E25 | 26 | 5 | 11.5 | 16 | 32 | 1.8 | 6.4 | 14.5 | 34.5 | 50 | $\mathbf{2 0 0 0 7}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OSP-E32 | 32 | 5 | 11.5 | 16 | 32 | 1.8 | 6.4 | 14.5 | 40.5 | 50 | $\mathbf{2 0 0 0 7}$ |
| OSP-E50 | 44 | 8.2 | 20 | 20 | 43 | 4.5 | 12.3 | 20 | 58 | 80 | $\mathbf{2 0 0 2 6}$ |

Linear Drive
 Accessories
 Motor Mountings Coupling Housing

Size 25, 32, 50

- For Series OSP-E..BHD

The coupling housing is the mounting base for the gear or for the motor.

Coupling Housing (for motor)

Dimension Table (mm)

Series	MA	MQ	Order No.
OSP-E25BHD	22	76	$\mathbf{1 2 3 0 0}$
OSP-E32BHD	30	98	$\mathbf{1 2 3 0 1}$
OSP-E50BHD	41	128	$\mathbf{1 2 3 0 2}$

Motor Flange (Semi-finished)

Dimension Table (mm)

Series	MB	MC	MD	ME	MH	MU	MV	Order No.
OSP-E25BHD	14	90	36	82	8.5	9	15	$\mathbf{1 2 3 0 8}$
OSP-E32BHD	14	100	55	106	10.5	11	18	12309
OSP-E50BHD	18	125	77	144	12.5	13.5	20	12310

Linear Drive Accessories Profile Mountings

Size 25, 32, 50
-SP

- ORIGA
- SYSTEM

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Material:
Anodized aluminum
Stainless steel version on demand.
The mountings are supplied in pairs.

Weight (mass) [kg]

Type	Weight (mass) [kg] (pair)
MAE-25	0.3
MAE-32	0.4
MAE-50	0.8

Dimension Table (mm)

Series	Type	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	RE	Order No.
OSP-E25	MAE-25	M5	5.5	22	27	38	26	40	47.5	40	92	34.5	8	10	41.5	28.5	49	36	26	$\mathbf{1 2 2 7 8}$
OSP-E32	MAE-32	M5	5.5	30	33	46	27	46	54.5	40	92	40.5	10	10	48.5	35.5	57	43	32	$\mathbf{1 2 2 7 9}$
OSP-E50	MAE-50	M6	7	48	40	71	34	59	67	45	112	52	10	11	64	45	72	57	44	$\mathbf{1 2 2 8 0}$

Linear Actuator with Toothed Belt Series OSP-E..B

Contents

Description	Page
Overview	$47-50$
Technical Data	$51-55$
Dimensions	56

The System Concept

ELECTRIC LINEAR ACTUATOR FOR POINT-TO-POINT APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Actuator with Toothed Belt

Advantages:

- Precise path and position control

■ High speed operation
■ Easy installation
■ Low maintenance
■ Ideal for precise point-to-point and reciprocating applications

Features:
■ Integrated drive and guidance system
■ Long available strokes
\square Complete motor and control packages
\square Diverse range of accessories and mountings
\square Bi-parting and special options available

PROLINE
The compact aluminium roller guide for high loads and velocities.

SERIES OSP-E, BELT DRIVEN

STANDARD VERSIONS

 OSP-E..BStandard carrier with integral guidance.
Dovetail profile for mounting of accessories and the actuator itself.

BASIC ACTUATOR OPTIONS

DRIVE SHAFT OPTIONS

MOUNTINGS FOR
OSP-E25 TO E50

CLEVIS MOUNTING

Page 68-69
Carrier mounting for driving loads supported by external linear guides.

END CAP MOUNTING
Page 70
For end-mounting of the actuator

MID-SECTION SUPPORT

Page 71

For supporting long actuators or mounting the actuator on the dovetail grooves.

INVERSION MOUNTING

Page 75

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

Characteristics				
	acteristics	Symbol	Unit	Description
General Features				
Type				Linear Actuator with Toothed Belt
Series				OSP-E..B
Mounting				See drawings
Ambient Temperature range		$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {mix }} \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -30 \\ & +80 \end{aligned}$
Weight (mass)			kg	Seetable
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Belt wheels			Aluminium
	Sealing band			Hardened stainless steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Encapsulation class			IP	54

Weight (mass) kg and Inertia					
Series	Atstroke 0 m	Weight (mass) kg] Add per metre stioke \|Moving mass		Inertia $\left[\mathrm{x} \mathrm{10.6} / \mathrm{kgm}^{2}\right.$] At stroke $0 \mathrm{~m} \quad$ Add permetre	
OSP-E25	0.9	1.6	0.25	25.3	6.6
OSP-E32	1.8	3.2	0.43	43.3	10
OSP-E50	5.3	6.3	1.08	312.2	45

Installation Instructions

Use the threaded holes in the end cap for mounting the linear actuator. See if mid-section supports are needed using the maximum allowable un-supported length graph on page 53.
At least one end cap must be secured to prevent axial sliding when midsection support is used.
When the linear actuator is moving an externally guided load, the clevis mounting should be used (see page 68).

The linear actuators can be fitted with the standard carrier mounting facing in any direction.
To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards.
The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 75).

Series OSP-E..B
Size 25, 32, 50

Standard Versions:

- Standard carrier with integral guidance.
- Dovetail profile for mounting of accessories and the actuator itself.

Special Versions:

- Position of Drive Shafts

Sizing Performance
 Overview Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended for selection :

1. Required acceleration is shown in graphs on page 54.
2. Required torque is shown on page 55.
3. Check that maximum values in the adjacent charts are not exceeded.
4. Check max. allowable torque on drive shaft by using table T2. (Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
5. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
6. Check that the maximum allowable unsupported length is not exceeded (see on page 53).

Combined Loadings

If several forces and moments are applied to the linear actuator simultaneously, then the following equation must be fulfilled in addition to the maximum loadings stated beside.

Performance Overview

Characteristics	Unit	Description		
Size		OSP-E25B	OSP-E32B	OSP-E50B
Max. speed	$[\mathrm{m} / \mathrm{s}]$	2	3	5
Linear motion per revolution, drive shaft	$[\mathrm{mm}]$	60	60	100
Max. rpm. drive shaft	$\left[\mathrm{min}^{-1}\right]$	2000	3000	3000
Max. effective $\quad<1 \mathrm{~m} / \mathrm{s}:$ action force $\mathrm{F}_{\text {A }}$ at speed	$[\mathrm{N}]$	50	150	425
No-load torque $\quad>2 \mathrm{~m} / \mathrm{s}$:	$[\mathrm{N}]$	50	120	375
Max. acceleration/deceleration	$[\mathrm{N}]$	-	100	300
Repeatability	$\left[\mathrm{mm} / \mathrm{s}^{2}\right]$	0.4	0	0.5
Max. standard stroke length	$[\mathrm{mm} / \mathrm{m}]$	± 0.05	± 0.05	± 0.05

Maximum Allowable Torque on Drive Shaft
Speed and Stroke

OSP-E25B				OSP-E32B				OSP-E50B			
Speed [m/s]	Torque [Nm]	$\left\lvert\, \begin{aligned} & \text { Stroke } \\ & {[\mathrm{m}]} \end{aligned}\right.$	Torque [Nm]	$\begin{aligned} & \text { Speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	Torque [Nm]	Stroke [m]	Torque [Nm]	$\begin{aligned} & \text { Speed } \\ & {[\mathrm{m} / \mathrm{s}]} \end{aligned}$	Torque [Nm]	Stroke [m]	Torque [Nm]
1	0.9	1	0.9	1	2.3	1	2.3	1	10.0	1	10.0
2	$\begin{aligned} & 0.9 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} 2 \\ 0.9 \end{array}$	$\begin{aligned} & 0.9 \\ & 3 \end{aligned}$	$\begin{aligned} & 2 \\ & 1.8 \end{aligned}$	(3)	$\begin{array}{\|l} 2 \\ 2.3 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{gathered} 2.3 \\ 3 \\ 2.3 \\ 1.8 \\ \hline \end{gathered}$	$\begin{array}{\|l} 2 \\ 9.0 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 9.5 \\ & 3 \\ & 8.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 9.0 \\ 4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 10.0 \\ & 7.0 \\ & 6.0 \\ & \hline \end{aligned}$

Important:
The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.
Example above: OSP-E32B-stroke 2 m , required speed $3 \mathrm{~m} / \mathrm{s}$;
From table T2: speed $3 \mathrm{~m} / \mathrm{s}$ gives 1.8 Nm and stroke 2 m gives 2.3 Nm .
Max. torque for this application is 1.8 Nm .

Maximum Allowable Static Loadings

Size	Max. applied load L [N]			M Max. moments $[\mathrm{Nm}]$		
		M	M_{s}	M_{v}		
OSP-E25B	160	12	2	8		
OSP-E32B	300	25	8	16		
OSP-E50B	850	80	16	32		

$\mathrm{k}=$ Maximum allowable distance between mountings/mid-section support for a given load (L)

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k.)

Maximum Allowable Unsupported Length Stroke Length

Stroke Lengths

The stroke lengths of the linear actuators are available in multiples of 5 mm up to 5 m .
(OSP-E25: max. 3 m)
Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used (see separate catalogue).
Align the centre line of the shock absorber as closely as possible with the object's centre of gravity.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupler or belt wheel, a steadying block should be used.

Belt wheels

Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Size	Min. Z	Min. \varnothing
OSP-E25B	24	38
OSP-E32B	24	38
OSP-E50B	36	57

Required Acceleration

Distance-Time Graph

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.
The graphs assume that acceleration and deceleration are equal.
Please note that specifying nonessential high acceleration or short cycle time will result in an oversized motor.

Max. speed 3 m/s

Max. speed 2 m/s

Max. speed 5 m/s

Required Torque

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the linear actuator can be sized and the required torque is shown in the adjacent graphs. Mass in graphs = Load + moving mass of the linear actuator (according to the weight chart on page 51).

Please note:

When using an additional guide, please add the mass of the carriage to the total moving mass.

Belt Driven Linear Actuator - Basic Unit

Series OSP-E25B, -E32B, -E50B
Overall length $=(2 \times A)+$ stroke (does not include any safety stroke)

(Standard)
(For options on drive shaft, see ordering information on page 144)

* The end of stroke must not be used as a mechanical stop. Add to both ends, a minimum extra length, corresponding to the linear motion per one revolution of the drive shaft. The use of AC motor with frequency converter drives normally requires a larger 'extra length' than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA technical support department.

When mechanical stops are required CONSULT FACTORY.

Standard Carrier Mounting

 Series OSP-E25B, -E32B, -E50B

Dimension Table (mm)

Series	A	B	C	E	G	H	J	K	M	S	V	X	Y	CF	FB	FH	KB	KC	KE	KF	KG	KH	KJ	KL	KP	ZZ
OSP-E25B	125	22	41	27	M5	10	117	21.5	31	33	25	65	M5	52.5	40	39.5	$10_{j 6}$	15	22	37	57	30	19^{H77}	24	M5	8
OSP-E32B	150	25	52	36	M6	12	152	28.5	38	36	27	90	M6	66.5	52	51.7	$10_{\mathrm{j} 6}$	18	17.5	36.5	61	38	26^{H77}	26	M6	10
OSP-E50B	200	25	87	70	M6	12	200	43	49	36	27	110	M6	92.5	76	77	$16_{\text {h8 }}$	32	23.5	48.5	85	50	40^{H77}	34	M8	10

Linear Actuator with Toothed Belt and Bi-Parting Carriers Series OSP-E..BP

Contents

Description	Page
Overview	$58-60$
Technical Data	$61-65$
Dimensions	66

The System Concept

ELECTRIC LINEAR ACTUATOR FOR SYNCHRONIZED

 BI-PARTING APPLICATIONSA completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Actuator with Toothed Belt and Bi-Parting Carriers

Advantages:
■ Precise synchronized bi-parting movements
\square Precise path and position control

- High speed operation
- Easy installation

■ Low maintenance
\square Ideal for centering and door operating applications

Features:

■ Integrated drive and guidance system

- Complete motor and control packages
- Diverse range of accessories and mountings
- Special options available

Threaded holes for motor mounting (on two sides)

SERIES OSP-E, BI-PARTING BELT DRIVEN

STANDARD VERSIONS OSP-E..BP

Standard carrier with integral

 guidance.Dovetail profile for mounting of accessories and the actuator itself.

BASIC ACTUATOR OPTIONS

DRIVE SHAFT OPTIONS

MOUNTINGS FOR
OSP-E25 TO E50

CLEVIS MOUNTING

Page 68-69
Carrier mounting for driving loads supported by external linear guides.

END CAP MOUNTING

Pages 70
For end-mounting of the actuator

MID-SECTION SUPPORT

Page 71
For supporting long actuators or mounting the actuator on the dovetail grooves.

INVERSION MOUNTING

Page 75
The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments..

Characteristics				
	racteristics	Symbol	Unit	Description
General Features				
Type				Bi-Parting Belt-Driven for synchronized bi-parting movements
Series				OSP-E..BP
Mounting				See drawings
Ambient Temperature range		$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$	$\begin{array}{\|l} \hline{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{aligned} & \hline-30 \\ & +80 \end{aligned}$
Weight (mass)			kg	See table
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Belt wheels			Aluminium
	Sealing band			Hardened stainless steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Encapsulation class			IP	54

Weight (mass) kg and Inertia

Series	Weight (mass) kg]			Inertia [x $10^{\left.-6 / \mathrm{kgm}^{2}\right]}$	
	At stroke 0 m	Add per metre stroke	Moving mass		\| Add per metre
OSP-E25BP	1.15	1.6	0.5	48	6.6
OSP-E32BP	2.23	3.2	0.86	83	10
OSP-E50BP	6.38	6.3	2.16	585	45

Installation Instructions

Use the threaded holes in the end cap for mounting the linear actuator. See if mid-section supports are needed using the maximum allowable un-supported length graph on page 63.
At least one end cap must be secured to prevent axial sliding when midsection support is used.
When the linear actuator is moving an externally guided load, the clevis mounting should be used (see page 68).

The linear actuators can be fitted with the standard carrier mounting facing in any direction.
To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards.
The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 75).

Linear Actuator with Toothed Belt and Bi-Parting Carriers

Series OSP-E..BP
Size 25, 32, 50

- SYSTEM

Standard Versions:

- Standard carrier with integral guidance.
- Dovetail profile for mounting of accessories and the actuator itself.

Special Versions:

- Position of Drive Shafts

Maintenance

All moving parts are long-term lubricated for a normal operational environment. We recommend a check and lubrication of the linear actuator, and if necessary a change of the toothed belt and wear parts, after an operation time of 4000 hours of operation or 3000 km , depending on the type of application.

Start Up

The products in this datasheet should not be operated until the machine/ application in which they are used has passed necessary inspection.

Sizing Performance Overview
 Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended for selection:

1. Required acceleration is shown in graphs on page 64.
2. Required torque is shown on page 65.
3. Check that maximum values in the adjacent charts are not exceeded.
4. Check max. allowable torque on drive shaft by using table T2.
(Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
5. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
6. Check that the maximum allowable unsupported length is not exceeded (see on page 63).

Performance Overview

Characteristics	Unit	Description		
Size		OSP-E25BP	OSP-E32BP	OSP-E50BP
Max. speed	$[\mathrm{m} / \mathrm{s}]$	2	3	5
Linear motion per revolution, drive shaft	$[\mathrm{mm}]$	60	60	100
Max. rpm, drive shaft	$\left[\mathrm{min}^{-1}\right]$	2000	3000	3000
Max. effective action force F_{A} at speed$\quad 1 \mathrm{~m} / \mathrm{s}:$	$[\mathrm{N}]$	50	150	425
No-load torque $>2 \mathrm{~m} / \mathrm{s}:$	$[\mathrm{N}]$	50	120	375
Max. acceleration/deceleration	$[\mathrm{N}]$	-	100	300
Repeatability	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	0.4	0.5	0.6
Max. standard stroke length	$[\mathrm{mm} / \mathrm{m}]$	± 0.05	± 0.05	± 0.05

Important:
The maximum permissible moment on the drive shaft is the lowest value of the speed- or stroke-dependent moment value.
Example above: OSP-E32B-stroke 2 m , required speed $3 \mathrm{~m} / \mathrm{s}$;
From table T2: speed $3 \mathrm{~m} / \mathrm{s}$ gives 1.8 Nm and stroke 2 m gives 2.3 Nm .
Max. torque for this application is 1.8 Nm .

* The stroke is the ordering stroke, see page 66.

Maximum Allowable Static Loadings

Size	Max. applied load L [N]	Max^{*}. moments [Nm]		
		M^{*}	M_{s}	M_{v}
OSP-E25BP	160	12	2	8
OSP-E32BP	300	25	8	16
OSP-E50BP	850	80	16	32

*The max. load and the max. moments is the total values of both carriers.
\square

$\mathrm{k}=$ maximum allowable distance between end cap mounting and mid-section support for a given loading L.
The maximum force L must be distributed equally on the two carriers.

(Up to the curve in the above graph the deflection will be max. 0.2 \% of distance k.)

Maximum Allowable Unsupported Length Stroke Length

Stroke Lengths

The stroke lengths of linear actuators are available in multiples of 5 mm up max. $2 \times 2500 \mathrm{~mm}$
(OSP-E25BP: max. $10 \times 1500 \mathrm{~mm}$).
Other stroke lengths are available on request.
The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft.
The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used (see separate catalogue).
Align the centre line of the shock absorber as closely as possible with the object's centre of gravity.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupler or belt wheel, a steadying block should be used.

Belt wheels

Minimum allowable number of teeth Z (AT5) at maximum applied torque.

Size	Min. Z	Min. \varnothing
OSP-E25BP	24	38
OSP-E32BP	24	38
OSP-E50BP	36	57

Required Acceleration

Distance-Time Graph

Using the required travel distance and total time, the adjacent graphs show the required acceleration based on maximum speed.
The graphs assume that acceleration and deceleration are equal.
Please note that specifying nonessential high acceleration or short cycle time will result in an oversized motor.

Max. speed 3 m/s

Max. speed 2 m/s

Max. speed 5 m/s

Required Torque

Using the known mass, the direction of the application and the required acceleration from the distance-time graphs, the linear actuator can be sized and the required torque is shown in the adjacent graphs. Mass in graphs = Load + moving mass of the linear actuator (according to the weight chart on page 61).

Please note:

When using an additional guide, please add the mass of the carriage to the total moving mass.

Belt Driven Linear Actuator - Basic Unit Series OSP-E25BP, -E32BP, -E50BP

$$
\text { Overall length }=(2 \times A)+\text { stroke (does not include any safety stroke) }
$$

Drive Shaft Options	
0	

(For options on drive shaft, see ordering information on page 144)

* The end of stroke must not be used as a mechanical stop. Add to both ends, a minimum extra length, corresponding to the linear motion per one revolution of the drive shaft. The use of AC motor with frequency converter drives normally requires a larger 'extra length' than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA technical support department.

Dimension KM (mm)

Size	KM $_{\text {min }}$	KM $_{\text {rec. }}$
$\mathbf{2 5}$	130	190
$\mathbf{3 2}$	170	230
$\mathbf{5 0}$	220	320

Dimension Table (mm)

Series	A	B	C	E	G	H	J	K	M	S	V	X	Y	CF	FB	FH	KB	KC	KE	KF	KG	KH	KJ	KL	KM ${ }_{\text {min }}$	KP	ZZ
OSP-E25BP	125	22	41	27	M5	10	117	21.5	31	33	25	65	M5	52.5	40	39.5	$10_{j 6}$	15	22	37	57	30	$19^{H 7}$	24	130	M5	8
OSP-E32BP	150	25	52	36	M6	12	152	28.5	38	36	27	90	M6	66.5	52	51.7	$10_{j 6}$	18	17.5	36.5	61	38	26^{H7}	26	170	M6	10
OSP-E50BP	200	25	87	70	M6	12	200	43	49	36	27	110	M6	92,.5	76	77	$16_{\text {h8 }}$	32	23.5	48.5	85	50	$40^{H 7}$	34	220	M8	10

Accessories for Linear Belt Drive Systems Series OSP-E

Contents

Description	Page
Clevis Mounting	$68-69$
End Cap Mountings	70
Mid-Section Support	71
End Cap Mountings (for Linear Drives with guides)	$72-73$
Mid-Section Support (for Linear Drives with guides)	74
Inversion Mounting	75
Adaptor Profile	76
T-Nut Profile	77
Profile Mountings	78

Linear Drive Accessories Clevis Mounting

Size 25, 32, 50

For Linear Drives

- Series OSP-E Belt
- Series OSP-E Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.
In the drive direction, the mounting has very little play.
Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

Series OSP-E25 to E32

Series OSP-E50

Dimension Table (mm)

| Series | \mathbf{J} | \mathbf{Q} | \mathbf{T} | $\boldsymbol{\varnothing R}$ | HH | KK | LL | MM | NN* | OO | PP | SS | ST | TT | UU | Order No.
 Standard Stainless |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^2]

Please note:
When using additional inversion mountings, take into account the dimensions on page 75.

Series OSP-E25 to E32

Series OSP-E50

Linear Drive Accessories Clevis Mounting, play-free

Size 25, 32, 50

For Linear Drives

- Series OSP-E Belt
- Series OSP-E Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.
In the drive direction the clevis mounting has a play-free fit.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

Dimension Table (mm)

Series	\mathbf{J}	\mathbf{Q}	\mathbf{T}	$\boldsymbol{\varnothing R}$	HH	KK	LL	MM	NN*	OO	PP	SS	ST	TT	UU	Order No. Standard Stainless	

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

Please note:
When using additional inversion mountings, take into account the dimensions on page 75.

Linear Drive Accessories End Cap Mountings

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw *

On the end-face of each end cap there are four threaded holes for mounting the actuator.
The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material:

Series OSP-25 to 32:
Galvanised steel.
Series OSP-50:
Anodized aluminium.

Series OSP-E50: Type C1

Dimension Table (mm)

| Series | E | ØU | AB | AC | AD | AE | AF | CL | DG | Order No.
 Type A1 | Type C1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| OSP-E25 | 27 | 5.8 | 27 | 16 | 22 | 18 | 22 | 2.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 39 | $\mathbf{2 0 1 0 - 1}$ | - | | | | | | |
| OSP-E32 | 36 | 6.6 | 36 | 18 | 26 | 20 | 30 | 3 |
| 50 | $\mathbf{3 0 1 0 - 1}$ | - | | | | | | |
| OSP-E50 | 70 | 9 | 40 | 12.5 | 24 | 30 | 48 | - |
| 86 | - | $\mathbf{5 0 1 0 - 1}$ | | | | | | |

* Important:

With the OSP-E Screw series, the end cap mounting can only be used at the opposite end of the drive shaft.

We recommend the application of two mid section supports (page 74) at the drive shaft end of the actuator.

Series OSP-E25, E32, E50, Type E1
(Mounting from above / below with 2 through holes)

Series OSP-E25, E32, E50, Type D1
(Mountings from below with 2 screws)

Linear Drive Accessories
 Mid-Section Support

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw

Note on Types E1 and D1:
The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the centre of the actuator is different.

Stainless steel version on request

Dimension Table (mm)

Series	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	Order No. Type E1 Type D1	
OSP-E25	M5	5.5	22	27	38	26	40	47.5	36	50	34.5	8	10	41.5	28.5	49	36	20009	20008
OSP-E32	M5	5.5	30	33	46	27	46	54.5	36	50	40.5	10	10	48.5	35.5	57	43	20158	20157
OSP-E50	M6	7	48	40	71	34	59	67	45	60	52	10	11	64	45	72	57	20163	20162

Linear Drive Accessories Mountings for Linear Drives fitted with OSP-guides

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw *

Overview

Mounting Type	Type	Type - OSP G SLIDELINE PROLINE MULTIBRAKE			$\begin{aligned} & \text { uides } \\ & \text { POV } \\ & 25 / \\ & 25 \\ & 25 \end{aligned}$	ERS 25/ 35	IDE $\begin{aligned} & 25 / \\ & 44 \end{aligned}$	$\left\lvert\, \begin{aligned} & 32 / \\ & 35 \end{aligned}\right.$		$\begin{array}{\|l\|} 50 / \\ 60 \end{array}$	$\left\lvert\, \begin{aligned} & 50 / \\ & 76 \end{aligned}\right.$
End cap mounting	Type A1										
	Type A2	0	0								
	Type A3				0	0		0			
End cap mounting, reinforced	Type B1	X	X		X	X	X	X	X		
	Type B3										
	Type B4						0		0		
End cap mounting X	Type C1			X						X	
	Type C2			0							
	Type C3									0	
	Type C4										0
Mid section support, small Mid section support, wide	Type D1	X	X	X	X	X	X	X	X	X	X
	Type E1	X	X	X	X	X	X	X	X	X	X
	Type E2	0	0	0							
	Type E3				0	0		0		0	
	Type E4						0		0		0

| X | $=$carriage mounted in top
 (12 o'clock position) | * Important:
 With the OSP-E Screw series, end
 cap mountings type A, B and C can |
| ---: | :--- | ---: | :--- |
| O | $=$carriage mounted in lateral
 (3 or 9 o'clock position) | only be used at the opposite end of
 the drive shaft. Please use mid- |
| | $=$ available components | supports (page 74). |
| | | |

End cap mountings *

Four internal screw threads are located in the end faces of all OSP actuators for mounting the drive unit. End cap mountings may be secured across any two adjacent screws.

Material: Series OSP-25, 32: zinc plated steel Series OSP-50: anodized aluminium

Supplied in pairs.

Series OSP-E25, E32: Type B

Dimension Table (mm)

| - Dimensions AE and AF (Dependant on the mounting type) |
| :--- | :--- | :--- | :--- | :--- | :--- |

Mount type	Dimensions AE forsize $\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{5 0}$	AF forsize $\mathbf{2 5}$	
A1	18	20	-	22	$\mathbf{3 2}$
A2	33	34	-	$\mathbf{3 7}$	40
A3	45	42	-	49	-
B1	42	55	-	22	-
B3	-	-	-	-	-
B4	80	85	-	60	-
C1	-	-	30	-	-
C2	-	-	39	-	-
C3	-	-	54	-	-
C4	-	-	77	-	-

Series OSP - E50: Type C

Dimension Table (mm)

Series	E	$\boldsymbol{\text { øU }}$	AB	AC	AD	CL	D
OSP-E25	27	5.8	27	16	22	2.5	39
OSP-E32	36	6.6	36	18	26	3	50
OSP-E50	70	9	40	12.5	24	-	86

*see mounting instructions on page 72

Series OSP-E25, E32, E50: Type E.
(Mounting from above / below using a cap screw)

Series OSP-E25, E32, E50: Type D1 (Mounting from below with thread screw)

Mid section supports

Information regarding type E1 and D1:
Mounting of the mid section supports is also possible on the lower side of the drive. In this case, please note the new centre line dimensions.

Stainless steel version on request.

Dimension Table (mm)

- Dimensions DR und AF (Dependant on the mounting type)

Mount type	Dimensions DR forsize $\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{5 0}$	AF forsize $\mathbf{2 5}$				$\mathbf{3 2}$	$\mathbf{5 0}$
D1	-	-	-	22	30	48			
E1	8	10	10	22	30	48			
E2	23	24	19	37	44	57			
E3	35	32	31	49	52	72			
E4	46	40	57	60	60	95			

Dimension Table (mm)

Series	R	U	DF	DH	DK	DM	DN	DO	DP	DQ	DT	EF	EM	EN	EQ
OSP-E25	M5	5.5	27	38	26	40	47.5	36	50	34.5	10	41.5	28.5	49	36
OSP-E32	M5	5.5	33	46	27	46	54.5	36	50	40.5	10	48.5	35.5	57	43
OSP-E50	M6	7	40	71	34	59	67	45	60	52	11	64	45	72	57

Order instruction for mountings Type A - Type B - Type C - Type D - Type E

Mountingtype (versions)	Order No. size		
A	25	32	50
A2	$2010-1$	$3010-1$	-
A3	$2040-1$	$3040-1$	-
B1	$2060-1$	3060	-
B3	$20311-1$	$20313-1$	-
B4	-	-	-
C1	$20312-1$	$20314-1$	-
C2	-	-	$5010-1$
C3	-	-	$20349-1$
C4	-	-	$20350-1$
D1	-	-	$20351-1$
E1	20008	20157	20162
E2	20009	20158	20163
E3	20352	20355	20361
E4	20353	20356	20362

Series OSP-E25, E32

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended. The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder.

Stainless steel version on demand.

Please note:

Other components of the OSP system such as mid-section supports, proximity switches can still be mounted on the free side of the cylinder.

Important Note:

May be used in combination with Clevis Mounting, ref. page 68.

Dimension Table (mm)

Series	V	X	Y	BC	BE	BH	BJ	ZZ	Order No.
OSP-E25	25	65	M5	117	31	43	33.5	6	20037
OSP-E32	27	90	M6	150	38	51	39.5	6	$\mathbf{2 0 1 6 1}$
OSP-E50	27	110	M6	180	55	64	52	8	$\mathbf{2 0 1 6 6}$

Linear Drive Accessories
 Inversion Mounting

Size 25, 32, 50

Linear Drive Accessories

 Adaptor Profile

 Adaptor Profile}

Size 25, 32, 50

OSP
 - ORIGA
 - SYSTEM

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Adaptor Profile OSP

- A universal attachment for mounting of additional items
- Solid material

Dimensions Series OSP-E..BHD

Dimension Table (mm)

Series	A	B	C	D	E	F	L	X	RE	Order No.	
Standard	Stainless										
OSP-E25	16	23	32	M5	10.5	30.5	50	36	26	20006	$\mathbf{2 0 1 8 6}$
OSP-E32	16	23	32	M5	10.5	36.5	50	36	32	20006	20186
OSP-E50	20	33	43	M6	14	52	80	65	44	20025	$\mathbf{2 0 2 6 7}$

Linear Drive Accessories
 T-Nut Profile

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

T-Nut Profile OSP

- A universal attachment for mounting with standard T-Nuts

Dimensions Series OSP-E..BHD

Dimension Table (mm)

Series	RE	TA	TB	TC	TD	TE	TF	TG	TH	TL	Order No. Standard Stainless	
OSP-E25	26	5	11.5	16	32	1.8	6.4	14.5	34.5	50	20007	20187
OSP-E32	32	5	11.5	16	32	1.8	6.4	14.5	40.5	50	20007	20187
OSP-E50	44	8.2	20	20	43	4.5	12.3	20	58	80	20026	20268

Hoferiler
OPRCA

Linear Drive Accessories

 Profile Mountings

 Profile Mountings}

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Material:
Anodized aluminum
Stainless steel version on demand.
The mountings are supplied in pairs.

Weight (mass) [kg] Type Weight (mass) [kg] (pair) MAE-25 0.3 MAE-32 0.4 MAE-50 0.8

Series OSP-E25 to E50, Type MAE-..

Series OSP-E..BHD

Dimension Table (mm)

Series	Type	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	RE	Order No.
OSP-E25	MAE-25	M5	5.5	22	27	38	26	40	47.5	40	92	34.5	8	10	41.5	28.5	49	36	26	$\mathbf{1 2 2 7 8}$
OSP-E32	MAE-32	M5	5.5	30	33	46	27	46	54.5	40	92	40.5	10	10	48.5	35.5	57	43	32	$\mathbf{1 2 2 7 9}$
OSP-E50	MAE-50	M6	7	48	40	71	34	59	67	45	112	52	10	11	64	45	72	57	44	$\mathbf{1 2 2 8 0}$

Linear Actuator with Ball Screw Series OSP-E..S

Contents

Description	Page
Overview	$79-82$
Technical Data	$83-88$
Dimensions	89

ELECTRIC LINEAR ACTUATOR FOR HIGH ACCURACY APPLICATIONS

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Actuator with Ball Screw

Advantages:

- Accurate path and position control

■ High force output
■ Easy installation
■ Low maintenance
■ Excellent slow speed characteristics

- Ideal for precise traverse operations (e.g. machine feeds) and lifting applications)

Features:
■ Integrated drive and guidance system
■ Complete motor and control packages
\square Diverse range of accessories and mountings

- Optimal screw pitches

PROLINE
The compact aluminium roller guide for high loads and velocities.

SERIES OSP-E, SCREW-DRIVEN

BASIC ACTUATOR OPTIONS

BALL SCREW PITCH

The ball screws are available in various pitches. OSP-E25 in 5 mm , OSP-E32 in 5 or 10 mm and OSP-E50 in 5, 10, 25, 50 mm pitch.

MOUNTINGS FOR
OSP-E25 TO E50

CLEVIS MOUNTING
Page 92
Carrier mounting for driving loads supported by external linear guides.

END CAP MOUNTING
Page 94
For end-mounting of the actuator

MID-SECTION SUPPORT

Page 95

For supporting long actuators or mounting the actuator on the dovetail

INVERSION MOUNTING

Page 99

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

Characteristics

Characteristics		Symbol	Unit	Description
General Features				
Type				Linear Actuator with Ball Screw
Series				OSP-E..S
Mounting				Seedrawings
Operating temperature range		$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {mix }} \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -20 \\ & +80 \end{aligned}$
Weight (mass)			kg	See table
Installation				In any position
	Slotted profile			Extruded anodized aluminium
	Ball screw			Hardened steel
	Ball nut			Hardened steel
	Sealing band			Hardened stainless steel
	Guide bearings			Low friction plastic
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Encapsulation class			IP	54

Weight (mass) kg and Inertia

Series	At stroke Om	Weight (mass)[kg] Add per metre stroke \|Moving mass		Inertia $\left[\mathrm{x} 10^{-6} \mathrm{kgm}^{2}\right.$] At stroke 0 m Add per metre	
OSP-E25S	0.8	2.3	0.2	2.2	11.3
OSP-E32S	2.0	4.4	0.4	8.4	32
OSP-E50S	5.2	9.4	1.2	84	225

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the linear actuator.
See if mid-section supports are needed using the maximum allowable unsupported length graph on page 85 . At least one end cap must be secured to prevent axial sliding when midsection support is used (see page 94). When the linear actuator is moving an externally guided load, the clevis mounting should be used.
The linear actuators can be fitted with the standard carrier mounting facing in any direction.
To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards.
The inversion mounting can be fitted to transfer the driving force to the opposite side (see page 99).

Linear Actuator
 with
 Ball Screw
 Series OSP-E..S
 Size 25, 32, 50

Standard Version:

- Standard carrier with own internal guidance
- Dovetail grooves for mounting accessories and the drive itself
- Travel per rotation of threaded spindle:
Type OSP-E25:5mm
Type OSP-E32: $5,10 \mathrm{~mm}$
Type OSP-E50:5,10,25 mm

Maintenance

All moving parts are long-term lubricated for a normal operational environment. We recommend a check and lubrication of the linear actuator, and if necessary a change of worn parts, after every 12 months or 3000 km travel of distance, depending on the type of application. Please see separate instructions.

Commissioning

The products in this datasheet should not be operated until the machine/ application in which they are used has passed necessary inspection.

Sizing
 Performance Overview
 Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended for selection:

1. Recommended maximum acceleration is shown in graphs on page 86.
2. Required torque is shown in graphs on page 87.
3. Check that maximum values in the adjacent charts are not exceeded.
4. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
5. Check that the maximum allowable unsupported length is not exceeded (see on page 85).

Performance Overview

Characteristics	Unit	Description					
Series		OSP-E25S	OSP-E32S		OSP-E50S		
Pitch	[mm]	5	5	10	5	10	25
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25
Linear motion per revolution, drive shaft	[mm]	5	5	10	5	10	25
Max. rpm, drive shaft	[$\mathrm{min}^{-1]}$	3000	3000		3000		
Max. effective action force F_{A} Corresponding torque on drive shaft	$\begin{aligned} & \hline[\mathrm{N}] \\ & {[\mathrm{Nm}]} \end{aligned}$	$\begin{aligned} & \hline 250 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 600 \\ & 0.75 \end{aligned}$	1.3	1500 1.7		7.3
No-load torque	[Nm]	0,2	0,2	0,3	0,3	0,4	0,5
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20
Typical repeatability	[mm/m]	± 0.05	± 0.05		± 0.05		
Max. Standard stroke length	[mm]	1100	2000		3200		

Maximum Allowable Loadings

Size	Max. applied load [N]		$M a x$. moments $[\mathrm{Nm}]$		
	L	12	2	8	
OSP-E25	500	12	M_{s}		
OSP-E32	1200	25	8	16	
OSP-E50	3000	80	16	32	

Combined Loadings.

If several forces and moments are applied to the linear actuator simultaneously, then the following
equation must be fulfilled in addition to the above stated maximum loadings.
$\frac{L}{L(\max)}+\frac{M}{M(\max)}+\frac{M_{s}}{M_{s}(\max)}+\frac{M_{v}}{M_{v}(\max)} \leq 1$

Maximum Allowable Unsupported Length - Placing of Mid-Section Support

$\mathrm{k}=$ Maximum allowable distance between mountings/mid-section support for a given load (L)

Load L [N]

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k .)

Maximum
Allowable Unsupported Length

Stroke Length

Stroke Lengths

The stroke lengths of the linear actuators are available in multiples of 1 mm up to above maximum stroke lengths.
OSP-E25: max. 1100 mm OSP-E32: max. 2000 mm
OSP-E50: max. 3200 mm
Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.
Allow an additional safety clearance of minimum 25 mm at both ends.
The use of an AC motor with frequency converter normally requires a larder safety clearance than that required for servo systems. For advise, please contact your local HOERBIGER-ORIGA technical support department.

When mechanical stops are required, external shock absorbers should be used. Align the centreline of the shock absorber as closely as possible with the object's centre of gravity.

Mounting on the Drive Shaft

Do not expose the drive shaft to uncontrolled axial or radial forces when mounting coupling or belt wheel, a steadying block should be used.

Belt wheels

Minimum allowable number of teeth (AT5) and diameter of belt wheel at maximum applied torque.

Size	Min. Z	Min. \varnothing
OSP-E25S	24	38
OSP-E32S	24	38
OSP-E50S	36	57

Maximum

 rpm - StrokeAt longer strokes the speed has to be reduced according to the adjacent graphs.

Maximum rpm - Stroke

The maximum rpm shown in the graph, is 80% of the critical rpm .

Size OSP-E32, Pitch 5 mm Acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$

Size OSP-E50, Pitch 5 mm Acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$

Required Torque

Using the known mass, the direction of the application and the recommended acceleration, the linear actuator can be sized and the required torque is shown in the adjacent graphs.
Mass in graphs = Load + moving mass of the linear actuator according to the weight chart (see on page 83).

Please note:

When using an additional guide, please add the mass of carriage to the total moving mass.

Maximum RPM per Stroke for Critical Speed

	OSPE	Speed [mm/s]	OSPE	Speed [mm/s]		OSPE	Speed [mm/s]		
Stroke	25	pitch	32	pitch	pitch	50	pitch	pitch	pitch
	rpm	5	rpm	5	10	rpm	5	10	25
200	3000	250	3000	250	500	3000	250	500	1250
300	3000	250	3000	250	500	3000	250	500	1250
400	3000	250	3000	250	500	3000	250	500	1250
500	3000	250	3000	250	500	3000	250	500	1250
600	2667	222	2996	250	499	3000	250	500	1250
700	2089	174	2378	198	396	3000	250	500	1250
800	1680	140	1933	161	322	2745	229	458	1144
900	1381	115	1603	134	267	2311	193	385	963
1000	1155	96	1350	113	225	1972	164	329	822
1100	980	82	1153	96	192	1703	142	284	709
1200			996	83	166	1485	124	247	619
1300			869	72	145	1306	109	218	544
1400			765	64	127	1158	97	193	483
1500			678	57	113	1034	86	172	431
1600			606	50	101	929	77	155	387
1700			544	45	91	839	70	140	349
1800			491	41	82	761	63	127	317
1900			446	37	74	694	58	116	289
2000			407	34	68	635	53	106	265
2100						583	49	97	243
2200						538	45	90	224
2300						498	41	83	207
2400						462	38	77	192
2500						429	36	72	179
2600						400	33	67	167
2700						374	31	62	156
2800						351	29	58	146
2900						329	27	55	137
3000						309	26	52	129
3100						292	24	49	121
3200						275	23	46	115

[^3]
Overall length = (2 x A) + stroke (does not include any safety stroke)

* The end of stroke must not be used as a mechanical stop.
Add to both ends, a minimum extra length of 25 mm to the stroke.
The use of AC motor with frequency converter drives normally requires a larger 'extra length' than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA technical support department.

Standard Carrier Mounting

 Series OSP-E25S, -E32S, -E50S

Dimension Table (mm)

Series	A	B	C	E	G	H	J	K	M	S	V	X	Y	CF	FB	FH	KB	KL	KM	KN	ZZ
OSP-E25S	100	22	41	27	M5	10	117	21.5	31	33	25	65	M5	52.5	40	39.5	$6{ }_{\text {h7 }}$	17	2	13	8
OSP-E32S	125	25.5	52	36	M6	12	152	28.5	38	36	27	90	M6	66.5	52	51.7	$10_{\text {h7 }}$	31	2	20	10
OSP-E50S	175	33	87	70	M6	12	200	43	49	36	27	110	M6	92.5	76	77	$15_{\text {h7 }}$	43	3	28	10

Accessories for Linear Drive Systems (Mountings, Sensors) Series OSP-E Ballscrew

Contents

Description	Page
Clevis Mounting	$92-93$
End Cap Mountings	94
Mid-Section Support	95
End Cap Mountings (for Linear Drives with guides)	$96-97$
Mid-Section Support (for Linear Drives with guides)	98
Inversion Mounting	99
Adaptor Profile	100
T-Nut Profile	101
Profile Mountings	102

Linear Drive Accessories Clevis Mounting

Size 25, 32, 50

For Linear Drives

- Series OSP-E Belt
- Series OSP-E Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting.
In the drive direction, the mounting has very little play.
Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

Series OSP-E25 to E32

Series OSP-E50

Dimension Table (mm)

Series	\mathbf{J}	\mathbf{Q}	\mathbf{T}	$\boldsymbol{\varnothing R}$	HH	KK	LL	MM	NN*	OO	PP	SS	ST	TT	UU	Order No. Standard Stainless	
OSP-E25	117	16	M5	5.5	3.5	52	39	19	2	9	38	40	30	16	21	$\mathbf{2 0 0 0 5}$	$\mathbf{2 0 0 9 2}$
OSP-E32	152	25	M6	6.6	6	68	50	28	2	13	62	60	46	40	30	$\mathbf{2 0 0 9 6}$	$\mathbf{2 0 0 9 4}$
OSP-E50	200	25	M6	-	6	79	61	28	2	13	62	60	46	-	30	$\mathbf{2 0 0 9 7}$	$\mathbf{2 0 0 9 5}$

* Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

HDEABIEER
OBRCA

Please note:

When using additional inversion mountings, take into account the dimensions on page 99.

Series OSP-E25 to E32

Series OSP-E50

Linear Drive Accessories Clevis Mounting, play-free

Size 25, 32, 50

For Linear Drives

- Series OSP-E Belt
- Series OSP-E Screw

When external guides are used, parallelism deviations can lead to mechanical strain on the piston. This can be avoided by the use of a clevis mounting. In the drive direction the clevis mounting has a play-free fit.

Freedom of movement is provided as follows:

- Tilting in direction of movement
- Vertical compensation
- Tilting sideways
- Horizontal compensation

A stainless steel version is also available.

Dimension Table (mm)

Series	J	Q	T	øR	HH	KK	LL	MM	NN*	00	PP	SS	ST	TT	UU	Ord Standard	No. Stainless
OSP-E25	117	16	M5	5.5	3.5	52	39	19	2	9	49	40	30	16	21	20496	20498
OSP-E32	152	25	M6	6.6	6	68	50	28	2	13	69	60	46	40	30	20497	20499
OSP-E50	200	25	M6	-	6	79	61	28	2	13	69	60	46	-	30	20812	20818

[^4]
Please note:

When using additional inversion mountings, take into account the dimensions on page 99.

Linear Drive Accessories

 End Cap Mountings

 End Cap Mountings}

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw *

On the end-face of each end cap there are four threaded holes for mounting the actuator.
The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material:

Series OSP-25 to 32:
Galvanised steel.
Series OSP-50:
Anodized aluminium.

Series OSP-E50: Type C1

Dimension Table (mm)

| Series | E | ØU | AB | AC | AD | AE | AF | CL | DG | Order No.
 Type A1 | Type C1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

* Important:

With the OSP-E Screw series, the end cap mounting can only be used at the opposite end of the drive shaft.

We recommend the application of two mid section supports (page 95) at the drive shaft end of the actuator.

으ㅂㅗㅗ

Series OSP-E25, E32, E50, Type E1
(Mounting from above / below with 2 through holes)

Series OSP-E25, E32, E50, Type D1
(Mountings from below with 2 screws)

Linear Drive Accessories
 Mid-Section Support

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw

Note on Types E1 and D1:
The mid-section support can also be mounted on the underside of the actuator, in which case its distance from the centre of the actuator is different.

Stainless steel version on request

Dimension Table (mm)

| Series | R | U | AF | DF | DH | DK | DM | DN | DO | DP | DQ | DR | DT | EF | EM | EN | EQ | Order No.
 Type E1 | TypeD1 |
| :--- |$|$

Linear Drive Accessories Mountings for Linear Drives fitted with OSP-guides

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw *

Overview

Mounting Type	Type	Type - OSP GuidesSLIDELINEPROLINEMULTIBRAKE									
End cap mounting	Type A1										
	Type A2	0	0								
	Type A3				0	0		0			
End cap mounting,	Type B1	X	X		X	X	X	X	X		
	Type B3										
	Type B4						0		0		
End cap mounting	Type C1			X						X	
	Type C2			0							
	Type C3									0	
	Type C4										0
Mid section support,	Type D1	X	X	X	X	X	X	X	X	X	X
Mid section support,	Type E1	X	X	X	X	X	X	X	X	X	X
	Type E2	0	0	0							
	Type E3				0	0		0		0	
	Type E4						0		0		0

$X=$ carriage mounted in top (12 o'clock position)
$\mathrm{O}=$ carriage mounted in lateral (3 or 9 o'clock position)
$=$ available components

* Important:

With the OSP-E Screw series, end cap mountings type A, B and C can only be used at the opposite end of the drive shaft. Please use midsupports (page 98).

Series OSP - E25, E32: Type A

End cap mountings *

Four internal screw threads are located in the end faces of all OSP actuators for mounting the drive unit. End cap mountings may be secured across any two adjacent screws.

Material: Series OSP-25, 32:
zinc plated steel
Series OSP-50:
anodized aluminium
Supplied in pairs.

Series OSP - E25, E32: Type B

Series OSP - E50: Type C

Dimension Table (mm)

Series	E	øU	AB	AC	AD	CL	D
OSP-E25	27	5.8	27	16	22	2.5	39
OSP-E32	36	6.6	36	18	26	3	50
OSP-E50	70	9	40	12.5	24	-	86

*see mounting instructions on page 96

Mid section supports

Information regarding type E1 and D1: Mounting of the mid section supports is also possible on the lower side of the drive. In this case, please note the new centre line dimensions.

Stainless steel version on request.

Series OSP-E25, E32, E50: Type E. (Mounting from above / below using a cap screw)

Dimension Table (mm) - Dimensions DR und AF (Dependant on the mounting type)
Mount type Dimensions DR forsize $\mathbf{2 5}$ $\mathbf{3 2}$ $\mathbf{5 0}$ AF forsize $\mathbf{2 5}$ $\mathbf{3 2}$ D1 - - - 22 30 48 E1 8 10 10 22 30 48 E2 23 24 19 37 44 57 E3 35 32 31 49 52 72 E4 46 40 57 60 60 95

Series OSP-E25, E32, E50: Type D1 (Mounting from below with thread screw)

Dimension Table (mm)

Series	R	U	DF	DH	DK	DM	DN	DO	DP	DQ	DT	EF	EM	EN	EQ
OSP-E25	M5	5.5	27	38	26	40	47.5	36	50	34.5	10	41.5	28.5	49	36
OSP-E32	M5	5.5	33	46	27	46	54.5	36	50	40.5	10	48.5	35.5	57	43
OSP-E50	M6	7	40	71	34	59	67	45	60	52	11	64	45	72	57

Order instruction for mountings Type A - Type B - Type C - Type D - Type E

Mountingtype (versions)	OrderNo. size		
A	25	32	50
A2	$2010-1$	$3010-1$	-
A3	$2040-1$	$3040-1$	-
B1	$2060-1$	3060	-
B3	$20311-1$	$20313-1$	-
B4	-	-	-
C1	$20312-1$	$20314-1$	-
C2	-	-	$5010-1$
C3	-	-	$20349-1$
C4	-	-	$20350-1$
D1	-	-	$20351-1$
E1	20008	20157	20162
E2	20009	20158	20163
E3	20352	20355	20361
E4	20353	20356	20362

Series OSP-E25, E32

Linear Drive Accessories
 Inversion Mounting

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw

Series OSP-E50

Dimension Table (mm)

Series	V	\mathbf{X}	\mathbf{Y}	BC	BE	BH	BJ	ZZ	Order No.
OSP-E25	25	65	M5	117	31	43	33.5	6	$\mathbf{2 0 0 3 7}$
OSP-E32	27	90	M6	150	38	51	39.5	6	$\mathbf{2 0 1 6 1}$
OSP-E50	27	110	M6	180	55	64	52	8	$\mathbf{2 0 1 6 6}$

In dirty environments, or where there are special space problems, inversion of the cylinder is recommended. The inversion bracket transfers the driving force to the opposite side of the cylinder. The size and position of the mounting holes are the same as on the standard cylinder.
Stainless steel version on demand.
Please note:
Other components of the OSP system such as mid-section supports, proximity switches can still be mounted on the free side of the cylinder.

Important Note:

May be used in combination with Clevis Mounting, ref. page 92.

Linear Drive Accessories Adaptor Profile

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Adaptor Profile OSP

- A universal attachment for mounting of additional items
- Solid material

Dimensions Series OSP-E..BHD

Dimension Table (mm)

Series	A	B	C	D	E	F	L	X	RE	Order No.	
										Standard	Stainless
OSP-E25	16	23	32	M5	10.5	30.5	50	36	26	$\mathbf{2 0 0 0 6}$	$\mathbf{2 0 1 8 6}$
OSP-E32	16	23	32	M5	10.5	36.5	50	36	32	$\mathbf{2 0 0 0 6}$	$\mathbf{2 0 1 8 6}$
OSP-E50	20	33	43	M6	14	52	80	65	44	$\mathbf{2 0 0 2 5}$	$\mathbf{2 0 2 6 7}$

Dimensions Series OSP-E

Linear Drive
 Accessories

T-Nut Profile
Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

T-Nut Profile OSP

- A universal attachment for mounting with standard T-Nuts

Dimensions Series OSP-E..BHD

Dimension Table (mm)

| Series | RE | TA | TB | TC | TD | TE | TF | TG | TH | TL | Order No.
 Standard | Stainless |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$| OSP-E25 | 26 | 5 | 11.5 | 16 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| OSP-E32 | 32 | 5 | 11.8 | 6.4 | 14.5 |
| | 34.5 | 50 | 20007 | 20187 | |
| OSP-E50 | 44 | 8.2 | 20 | 20 | 43 |

Linear Drive Accessories
 Profile Mountings

Size 25, 32, 50

For Linear Drive

- Series OSP-E Belt
- Series OSP-E Screw
- Series OSP-E..BHD

Material:
Anodized aluminum
Stainless steel version on demand.
The mountings are supplied in pairs.
Weight (mass) [kg]

Type	Weight (mass) [kg] (pair)
MAE-25	0.3
MAE-32	0.4
MAE-50	0.8

Series OSP-E25 to E50, Type MAE-.

Series OSP-E..BHD

Dimension Table (mm)

Series	Type	R	U	AF	DF	DH	DK	DM	DN	DO	DP	DQ	DR	DT	EF	EM	EN	EQ	RE	Order No.
OSP-E25	MAE-25	M5	5.5	22	27	38	26	40	47.5	40	92	34.5	8	10	41.5	28.5	49	36	26	$\mathbf{1 2 2 7 8}$
OSP-E32	MAE-32	M5	5.5	30	33	46	27	46	54.5	40	92	40.5	10	10	48.5	35.5	57	43	32	$\mathbf{1 2 2 7 9}$
OSP-E50	MAE-50	M6	7	48	40	71	34	59	67	45	112	52	10	11	64	45	72	57	44	$\mathbf{1 2 2 8 0}$

Linear Actuator with Ball Screw and Extending Rod Series OSP-E..SBR

Contents

Description	Page
Overview	$103-106$
Technical Data	$107-109$
Dimensions	110

ELECTRIC LINEAR ACTUATOR FOR PRECISE AND HIGH SPEED POSITIONING OF HIGH MASSES

A completely new generation of linear drives which can be integrated into any machine layout neatly and simply.

Linear Actuator with Ball Screw
 and Extending Rod

Advantages

- High output force

■ Excellent running characteristics

- Accurate path and position control
- High levels of repeatability

Features
E Extending drive rod
■ Ball spindle
E Non-rotating drive rod

- Continuous duty operation

■ Large range of accessories

OPTIONS AND ACCESSORIES

SERIES OSP-E, BALL SCREW DRIVEN WITH EXTENDING ROD

STANDARD VERSIONS OSP-E..SBR

Pages 107-109
Standard carrier with integral guidance. Dovetail profile for mounting of accessories and the actuator itself.

MOUNTINGS FOR OSP-E25SBR TO E50SBR

END CAP MOUNTING
Page 110
For end-mounting the actuator on the extending rod side

Page 95
For mounting the actuator on the dovetail grooves and on the motor end

FLANGE MOUNTING C
Page 111
For end-mounting the actuator on the extending rod side

TRUNNION MOUNTING - EN
Page 112
For pivoted support
Trunnion mounting with pivot

- steplessly adjustable in axial direction.

DRIVE ROD CLEVIS
Page 113

DRIVE ROD EYE
Page 113

DRIVE ROD COMPENSATING COUPLING
Page 113
For compensating of radial and angular misaligments

ACCESSORIES

MAGNETIC SWITCHES
SERIES RS AND ES
Page 130
For electrical sensing of end and intermediate carrier positions.

Characteristics

Characteristics		Symbol	Unit	Description
General Features				
Type				Linear drive with ball screw and piston rod
Series				OSP-E..SBR
Mounting				seedrawings
Operating temperature range		$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$	$\stackrel{\circ}{\circ}^{\circ} \mathrm{C}$	$\begin{aligned} & \hline-20 \\ & +80 \end{aligned}$
Weight (Mass)			kg	see table
Installation				In any position
$\begin{aligned} & \overline{-\frac{0}{0}} \\ & \frac{\pi}{\omega} \\ & \sum_{0}^{\pi} \end{aligned}$	Slotted profile			Al anodized
	Ball screw			Steel
	Ball nut			Steel
	Piston rod			Stainless steel
	Sealing band			Hardened stainless steel
	Guide bearings			Low friction plastic
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Encapsulation class			IP	54

Weight (Mass) kg and Inertia

Series	Weight (Mass) [kg] At stroke $0 \mathrm{~m} \quad$ Add per metre stroke		Moving Mass [kg] At stroke 0 m IAdd per metre stroke		Inertia[x $10^{-6} \mathrm{kgm}^{2}$] At stroke 0m Add per metre stoke	
OSP-E25SBR	0.7	3.0	0.2	0.9	1.2	11.3
OSP-E32SBR	1.7	5.6	0.6	1.8	5.9	32.0
OSP-E50SBR	4.5	10.8	1.1	2.6	50.0	225.0

Installation Instructions

Use the threaded holes in the free end cap and a mid-section support close to the motor end for mounting the linear actuator.
The linear actuator can be fitted in any position. To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards.

Maintenance

All moving parts are long-term lubricated for a normal operational environment. We recommend a check and lubrication of the linear actuator, and if necessary a change of worn parts, after every 12th month or 3000 km travel of distance, depending on the type of application. Please see separate instructions.

Commissioning

The products in this datasheet should not be operated until the machine/ application in which they are used has passed necessary inspection.

Standard Version:

- Dovetail grooves for mounting accessories and the drive itself
- Travel per rotation of threaded spindle:
Type OSP-E25SBR: 5 mm
Type OSP-E32SBR: $5,10 \mathrm{~mm}$
Type OSP-E50SBR: 5, 10, 25 mm

Sizing
 Performance Overview
 Maximum Loadings

Sizing of Linear Actuator

The following steps are recommended for selection :

1. Check that the maximum values in the adjacent chart and transverse force/stroke graph below are not exceeded.
2. Check the lifetime/travel distance in graph below.
3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time in application

Maximum rpm Stroke

At longer stokes the speed has to be reduced according to the adjacent graphs.

Performance overview

Characteristics	Unit	Description									
Series		OSP-E25SBR	OSP-E32SBR					OSP-E50SBR			
Pitch	$[\mathrm{mm}]$	5	5	10	5	10	25				
Max. speed	$[\mathrm{m} / \mathrm{s}]$	0.25	0.25	0.5	0.25	0.5	1.25				
Linear motion per revolution, drive shaft	$[\mathrm{mm}]$	5	5	10	5	10	25				
Max. rpm drive shaft	$\left[\mathrm{min}^{-1}\right]$	3000	3000	3000							
Max. effective action force F_{A} Corresponding torque drive shaft	$[\mathrm{N}]$	260	550	1090	750	990	1680				
No-load torque	$[\mathrm{Nm}]$	0.3	0.65	2.6	0.9	2.4	10				
Max. allowable torque on drive shaft	$[\mathrm{Nm}]$	0.2	0.2	0.3	0.3	0.4	0.5				
Max. allowable acceleration	$[\mathrm{Nm}]$	0.6	1.5	2.8	4.2	7.5	20				
Typical repeatability	$\left[\mathrm{m} / \mathrm{s}^{2}\right]$	5	5		5						
Max. Standard stroke length	$[\mathrm{mm} / \mathrm{m}]$	± 0.05	500	50.05		± 0.05					

Maximum rpm - Stroke

Transverse Force / Stroke

Linear Actuator with Ball Screw and Extending Rod - Basic Unit

Hollow shaft with keyway (Option)
Dimension Table (mm)

Series	øKB ${ }_{\text {h7 }}$	KC	KL Opt. 3	Opt. 4	KM	KO	K ${ }^{\text {P9 }}$	KR
OSP-E25SBR	6	6,8	17	24	2	2	2	12
OSP-E32SBR	10	11.2	31	41	2	5	3	16
OSP-E50SBR	15	17	43	58	3	6	5	28

Option 3: Keyway
Option 4: Keyway, long version

* The end of stroke must not be used as a mechanical stop. Allow an additional safety clearance of minimum 25 mm at both ends. The use of an AC motor with frequency converter normally
requires a larger safety clearance than that required for servo systems.
For advise, please contact your local HOERBIGER-ORIGA
technical support department.

Stroke Length:

The stroke lengths of the linear actuators are as standard available in multiples of 1 mm up to 500 mm . Other stroke lengths on request.

Dimension Table (mm)

Series	B	C	E	G	H	K	I_{8}	AM	ØCF	CG	FB	FH	ØKB	KK	KL	KM	ØKN	ØKS	KT
OSP-E25SBR	22	41	27	M5	10	21.5	110	20	22	26	40	39.5	$6_{\text {h7 }}$	M10x1.25	17	2	13	-	-
OSP-E32SBR	25.5	52	36	M6	12	28.5	175.5	20	28	26	52	51.7	$10_{\text {h7 }}$	M10x1.25	31	2	20	33	2
OSP-E50SBR	33	87	70	M6	12	43	206	32	38	37	76	77	$15{ }_{\text {h7 }}$	M16x1.5	43	3	28	44	3

Linear Drive Accessories
 End Cap Mountings

Size 25, 32, 50

For Linear Drive

 with Trapezoidal Screw and extending rod- Series OSP-E..SR
- Series OSP-E..SBR

On the end-face of each end cap there are four threaded holes for mounting the actuator.
The hole layout is square, so that the mounting can be fitted to the bottom, top or either side.

Material:

Series OSP-25 to 32:
Galvanised steel
Series OSP-50:
Anodized aluminium.

The mountings are supplied singly

Series OSP-E50SR, (SBR): Type C1SR

Dimension Table (mm)

Series	E	ØU	AB	AC	AD	AE	AF	CL	DG	øKU	KV	Order No. * Type A1SR	TypeC1SR
OSP-E25SR(SBR)	27	5.8	27	16	22	18	22	2.5	39	-	-	$\mathbf{1 2 2 6 3}$	-
OSP-E32SR(SBR)	36	6.6	36	18	26	20	30	3	50	-	-	$\mathbf{1 2 2 6 4}$	-
OSP-E50SR(SBR)	70	9	40	12.5	24	30	48	-	86	15	15	-	$\mathbf{1 2 2 6 5}$

(*= single mounting)

* Important:

With the OSP-E Screw series, the end cap mounting can only be used at the end opposite to the drive shaft.

We recommend the application of two mid section supports (page 95) at the drive shaft end of the actuator.

Series OSP-E25SR (SBR) to E50SR (SBR): Type C-E..

Dimension Table (mm) for Flange Mounting C-E.

Series	Type	ø FB	E	MF	R	TF	UF	W	Order No.
OSP-E25SR (SBR)	C-E25	7	50	10	32	64	79	16	$\mathbf{1 2 2 3 2}$
OSP-E32SR (SBR)	C-E32	9	56	10	36	72	90	16	$\mathbf{1 2 2 3 3}$
OSP-E50SR (SBR)	C-E50	12	100	16	63	126	153	21	$\mathbf{1 2 2 3 4}$

Linear Drive Accessories
 Flange Mounting \mathbf{C}

Size 25, 32, 50

For Linear Drive with Trapezoidal Screw and extending rod

- Series OSP-E..SR
- Series OSP-E..SBR

The flange mounting C-E can only be mounted at the piston rod end of the linear drive.

Material:
Aluminium

Linear Drive Accessories
 Trunnion Mounting EN

Size 25, 32, 50

For Linear Drive with Trapezoidal Screw and extending rod

- Series OSP-E..SR
- Series OSP-E..SBR

The trunnion mounting is fitted to the dovetail rails of the actuator profile

The mountings are supplied in pairs.

Pivot EL for Trunnion Mounting EN

Size 25, 32, 50

For Linear Drive with Trapezoidal Screw and extending rod

- Series OSP-E..SR
- Series OSP-E..SBR

Material: Aluminium

Dimension Table (mm) for Trunnion Mounting EN

Series	Type	\mathbf{I}	\varnothing TD e9	TL	TM	UW	XV min	XV+ $1 / 2$ stroke	XV+ max. stroke	Order No.
OSP-E25SR (SBR)	EN-E25	50	12	12	63	42	73	83	62	$\mathbf{1 2 2 3 5}$
OSP-E32SR (SBR)	EN-E32	50	16	16	75	52	76.5	90	69.5	$\mathbf{1 2 2 3 6}$
OSP-E50SR (SBR)	EN-E50	80	20	20	108	87	110	110	84	$\mathbf{1 2 2 3 7}$

Series OSP-E25SR (SBR) to E50SR (SBR): Type EL

Material: Aluminium

Dimension Table (mm) for Pivot EL												
Series	Type	A	A_{1}	B	C	C	๑D ${ }^{\text {H7 }}$	๑D ${ }_{1}$	øD ${ }_{2}$	E	Weight (Mass) (kg)	Order No.
OSP-E25SR(SBR)	EL-032	55	36	20	26	13	12	13.5	8.4	9	0.06	PD 23381
OSP-E32SR(SBR)	EL-040/050	55	36	20	26	13	16	13.5	8.4	9	0.06	PD 23382
OSP-E50SR(SBR)	EL-063/080	65	42	25	30	15	20	16.5	10.5	11	0.10	PD 23383

Piston Rod Clevis according to ISO 8140 (CETOP RP102P) Type: GK-..

Order Instructions, Dimension Table (mm), Weight

Series	Type	øCK	CE	CL	CM	KK	LE	W	Mass(kg)	Order No.
OSP-E25SR(SBR)	GK-M10x1.25	10	40	20	10	M10x1.25	20	52	0.08	KY6135
OSP-E32SR(SBR)	GK-M10x1.25	10	40	20	10	M10x1.25	20	52	0.08	KY6135
OSP-E50SR(SBR)	GK-M16x1.5	16	64	32	16	M16x1.5	32	83	0.30	KY6139

Piston Rod Eye according to ISO 8139 (CETOP RP103 P) Type: GA-..

Order Instructions, Dimension Table (mm), Weight

Series	Type	A	CE	のCN	EN	ER	KK	LE	SW	U	W	๑Z	$\left\|\begin{array}{\|c\|} \hline \text { Mass } \\ (\mathrm{kg}) \end{array}\right\|$	Order No.
OSP-E25SR(SBR)	GA-M10x1.25	20	43	10	14	14	M10x1.25	15	17	10.5		15	0.072	KY6147
OSP-E32SR(SBR)	GA-M10x1.25	20	43	10	14	14	M10x1.25	15	17	10.5	57	15	0.072	KY6147
OSP-E50SR(SBR)	GA-M16 x 1.5	28	64	16	21	21	M16x1.5	22	22	15	85	22	0.21	KY6150

Linear Drive Accessories
 Piston Rod Elements

Size 25, 32, 50

- Piston Rod Clevis according to ISO 8140
- Piston Rod Eye according to ISO 8139
- Piston Rod Compensating Coupling
- Series OSP-E..SR
- Series OSP-E..SBR

Radial compensation of the centre axis

Piston Rod Compensating Coupling
Type: AK-..

Order Instructions, Dimension Table (mm), Weight

Series	Type	B	C	D	E	ØF	KK	SW1	SW2	SW3	SW4	SW5	Mass $(\mathbf{k g})$	Order No.
OSP-E25SR(SBR)	AK-M 10x1.25	20	23	70	31	21.5	M10x1.25	12	30	30	19	17	0.218	KY1129
OSP-E32SR(SBR)	AK-M 10x1.25	20	23	70	31	21.5	M10x1.25	12	30	30	19	17	0.218	KY1129
OSP-E50SR(SBR)	AK-M16x1.5	40	32	112	45	33.5	M16x1.5	19	41	41	30	30	0.637	KY1133

Linear Guides Series OSP-E

Contents

Description	Page
Overview	$115-116$
Plain Bearing SLIDELINE	$117-118$
Roller Guide POWERSLIDE	$119-122$
Ball Bushing Guide GUIDELINE	$123-126$
Aluminium Roller Guide PROLINE	$127-129$

Adaptive modular system

The Origa system plus - OSP provides a comprehensive range of linear guides for the pneumatic and electric linear drives.

Versions:

Electric linear drive

Series:

- OSP-E..B
- OSP-E..BP
- OSP-E..S

Sizes:

25-32-50

Advantages:

- Takes high loads and forces
- High precision
- Smooth operation
- Can be retrofitted
- Can be installed in any position

Linear Guides

Electric linear drive

- Series OSP-E..B (Belt Driven)
- Series OSP-E..S (Screw Driven)

SLIDELINE

The cost-effective plain bearing guide for medium loads.
Not available for OSP-E - Belt Drive series
See pages 117-118

POWERSLIDE

The roller guide for heavy loads.
See pages 119-122

GUIDELINE

The ball bushing guide for the heaviest loads and greatest accuracy.
See pages 123-126

PROLINE

The compact aluminium roller guide for high loads and velocities.
See pages 127-129

Technical Data

The table shows the maximum permissable values for smooth operation, which should not be exceeded even under dynamic conditions.

The load and moment figures apply to speeds $\mathrm{v}<0.2 \mathrm{~m} / \mathrm{s}$.

Plain Bearing Guide SLIDELINE

Series SL 25 to 50 for Linear Drive
 - Series OSP-E Screw ONLY

Features:

- Anodised aluminium guide rail with prism-shaped slideway arrangement
- Adjustable plastic slide elements - optional with integral brake
- Composite sealing system with plastic and felt wiper elements to remove dirt and lubricate the slideways.
- Corrosion resistant version available on request.

Loads, forces and moments

Series	Max. Moments [Nm]			Max. Load [N] L	Mass of with guid with 0 mm Stroke OSP-EScrew	rive [kg] inrease per 100 mm Stroke OSP-EScrew	Mass* of guide carriage [kg]	Order-No. SLIDELINE ${ }^{1)}$ for OSP-EScrew without brake
SL25	34	14	34	675	1.70	0.42	0.61	20342
SL32	60	29	60	925	3.44	0.73	0.95	20196
SL50	180	77	180	2000	7.89	1.35	2.06	20195

${ }^{11}$ Corrosion resistant fixtures available on request

For further mounting elements and options see accessories.

Dimension Table (mm)

Series	A OSP-E Screw	B OSP-E Screw	\mathbf{J}	M	Z	AA	BB	DD	CF	EC	ED	EE	EG	EW	FF	FT	FS	GG	JJ	ZZ
SL25	100	22	117	40.5	M6	162	142	60	72.5	47	12	53	39	30	64	73.5	20	50	120	12
SL32	125	25.5	152	49	M6	205	185	80	91	67	14	62	48	33	84	88	21	64	160	12
SL50	175	33	200	62	M6	284	264	120	117	94	14	75	56	39	110	118.5	26	90	240	16

Mid-SectionSupport

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k .)

Versions

- for electric linear drive:

Series OSP-E Belt Series OSP-E Screw

Technical Data

The Table shows the maximum permissable values for smooth operation, which should not be exceeded even under dynamic conditions.

Roller Guide Powerslide

- ORIGA
- SYSTEM

Series PS 25 to 50 for Linear Drive
-Series OSP-E Belt*

- Series OSP-E Screw

For further information and technical data see data sheets for linear drives

Features:

- Anodised aluminium guide carriage with vee rollers having 2 rows of ball bearings
- Hardened steel guide rail
- Several guide sizes can be used on the same drive
- Corrosion resistance version available on request (only for Series OSP-P)
- Max. speed $v=3 \mathrm{~m} / \mathrm{s}$,
- Tough roller cover with wiper and grease nipple
- Any length of stroke up to 3500 mm , (longer strokes on request)

* Series PS for OSP-E Bi-parting version on request

Example: PS 25/35

width of guide rail (35 mm)
size of drive
OSP-E25)

Series OSP-E Screw

Dimensions

Series OSP-E Belt

Overall length $=$ stroke $+(2 \times A)+A Z^{*}$ (does not include any safety stroke)

* Please note:

The dimension "AZ" must be added to "A". Stroke length to order is stroke + dimension "AZ" + extra length
Please also note the effect of dimension "AZ" when retrofitting a guide. Dimension "AZ" should be deducted from the originally supplied stroke (see pages 56 and 89)

Dimension Table (mm)

Series	A OSP-E Belt	OSP-E Screw	OSP-E Belt	OSP-E Screw	Z	AA	AZ	BB	CC	CF	EE	EF	EG	FF	FS	FT	GG	JJ	KG
PS 25/25	125	100	22	22	$6 x M 6$	145	5	90	47	79.5	53	11	39	80	20	73.5	64	125	57
PS25/35	125	100	22	22	$6 x M 6$	156	10	100	57	89.5	52.5	12.5	37.5	95	21.5	73	80	140	57
PS25/44	125	100	22	22	$6 x M 8$	190	27	118	73	100	58	15	39	116	26	78.5	96	164	57
PS32/35	150	125	25	25,5	$6 x M 6$	156	-	100	57	95.5	58.5	12.5	43.5	95	21.5	84.5	80	140	61
PS32/44	150	125	25	25,5	$6 x M 8$	190	6	118	73	107	64	15	45	116	26	90	96	164	61
PS50/60	200	175	25	33	$6 x M 8$	240	5	167	89	130.5	81	17	61	135	28.5	123.5	115	216	85
PS50/76	200	175	25	33	$6 x M 10$	280	25	178	119	155.5	93	20	64	185	39	135.5	160	250	85

Load Case 1 - Top Carrier

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k .)

Load Case 2 - Side Carrier

(Up to the curve in the above graph the deflection will be max. 0.2% of distance k.)

Mid-Section Support

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

Other Mountings and Options see page 96.

Service life

Calculation of service life is achieved in two stages:

- Determination of load factor L_{F} from the loads to be carried
- Calculation of service life in km

Lubrication

For maximum system life, lubrication of the rollers must be maintained at all times.
Only high quality lithium-based greases should be used.
Lubrication intervals are dependent on environmental conditions (temperature, running speed, grease quality etc.) therefore the installation should be regularly inspected.

1. Calculation of load factor L_{F}

with combined loads, $\mathbf{L}_{\mathbf{F}}$ should not exceed the value 1 .

2. Calculation of service life

For PS 25/25, PS 25/35
and PS 32/35
Service life $[k m]=\frac{106}{\left(L_{F}+0.02\right)^{3}}$

- For PS 25/44, PS 32/44

Service life $[\mathrm{km}]=\frac{314}{\left(L_{F}+0.015\right)^{3}}$
and PS 50/60:

For PS 50/76:

$$
\text { Service life }[k m]=\frac{680}{\left(L_{F}+0.015\right)^{3}}
$$

Versions

Ball bushing guide GUIDELINE

Series GDL 25 to 50 for Linear Drive

- Series OSP-E Belt *
- Series OSP-E Screw

Technical Data
The Table shows the maximum permissable values for smooth operation, which should not be exceeded even under dynamic conditions.

Loads, forces and moments

Features

- Anodised aluminium guide rail with four ball bushings
- Hardened and ground steel guide shafts
- Max. speed v=3 m/s
- Any length of stroke up to 6000 mm (longer strokes on request)

* Series GDL for OSP-E Bi-parting version on request

증	Series	Max. Moments [Nm]			Max.Load [N]			Mass of drive with guide carriage [kg] with 0 mm stroke		increase per100 mm stroke OSP-E OSP-E Belt Screw		Mass of guide carriage [kg]	Order No. GUIDELINE for	
$\bar{O} \underset{0}{2}$	GDL 25	115	75	90	2500	2100	1650	2.8	2.6	0.6	0.7	1.1	20315	20175
O	GDL 32	145	90	115	2500	2100	1650	4.1	4.1	0.8	0.9	1.2	20182	20180
茍.	GDL 50	500	375	355	8000	6250	4400	10,. 4	9.8	1.6	2.0	2.2	20316	20183

Dimensions

Series OSP-E Belt

Overall length $=$ stroke $+2 \times \mathrm{A}$ (does not include any safety stroke)

Note:

The guideline linear guide must be mounted on a flat surface along its entire length. For the OSP-E linear drive, the motor dimensions must be checked relative to the flat surface.

Arrangement of proximity sensors:

Proximity sensors can be fitted anywhere on either side. The magnet can be screwed on to one of the four ball bushing housings from underneath.

Proximity sensors

- see pages 130-132

Dimension Table (mm)

Series	$\begin{array}{\|c\|} \hline \\ \text { OSP-E } \\ \text { Belt } \end{array}$	$\begin{aligned} & \text { OSP-E } \\ & \text { Screw } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { OSP-E } \\ \text { Belt } \end{array}$	B OSP-E Screw	AF	FB	FC	FD	FE	FF	FG	FH	FI	FJ	$ø$ FK		FM	FN	FP	FQ	FR	FS			KG
GDL 25	125	100	22	22	22	120	145	110	70	M6	11	78	86	73	10.5	6.0	5.7	8	100	56.5	51.5	33.5	12	32	57
GDL 32	150	125	25	25.5	30	120	170	140	80	M6	11	86	98	85	10.5	6.0	5.7	8	100	56.5	51.5	33.5	12	32	61
GDL 50	200	175	25	33	48	180	200	160	120	M8	14	118	134	118	12	7.5	6.8	10	100	73	61	38	16	36	85

FO						
	OSP-E Screw			OSP-E Belt		
X	E25	E32	E50	E25	E32	E50
00	50.0	75.0	75.0	92.0	117.5	129.5
01	50.5	75.5	75.5	92.5	118.0	130.0
02	51.0	76.0	76.0	93.0	118.5	130.5
03	51.5	76.5	76.5	93.5	119.0	131.0
04	52.0	77.0	77.0	94.0	119.5	131.5
05	52.5	77.5	77.5	94.5	120.0	132.0
06	53.0	78.0	78.0	95.0	120.5	132.5
07	53.5	78.5	78.5	95.5	71.0	133.0
08	54.0	79.0	79.0	96.0	71.5	133.5
09	54.5	79.5	79.5	96.5	72.0	134.0
10	55.0	80.0	80.0	97.0	72.5	134.5
11	55.5	80.5	80.5	97.5	73.0	135.0
12	56.0	81.0	81.0	98.0	73.5	135.5
13	56.5	81.5	81.5	98.5	74.0	136.0
14	57.0	82.0	82.0	99.0	74.5	136.5
15	57.5	82.5	82.5	99.5	75.0	137.0
16	58.0	83.0	83.0	100.0	75.5	137.5
17	58.5	83.5	83.5	100.5	76.0	138.0
18	59.0	84.0	84.0	101.0	76.5	138.5
19	59.	84.5	84.5	101.5	77.0	139.0
20	60.0	85.0	85.0	102.0	77.5	139.5
21	60.5	85.5	85.5	102.5	78.0	140.0
22	61.0	36.0	86.0	103.0	78.5	140.5
23	61.5	36.5	86.5	103.5	79.0	141.0
24	62.0	37.0	87.0	104.0	79.5	141.5
25	62.5	37.5	87.5	104.5	80.0	142.0
26	63.0	38.0	88.0	105.0	80.5	142.5
27	63.5	38.5	88.5	105.5	81.0	143.0
28	64.0	39.0	89.0	106.0	81.5	143.5
29	64.5	39.5	89.5	106.5	82.0	144.0
30	65.0	40.0	90.0	107.0	82.5	144.5
31	65.5	40.5	90.5	107.5	83.0	95.0
32	66.0	41.0	91.0	108.0	83.5	95.5
33	66.5	41.5	91.5	108.5	84.0	96.0
34	67.0	42.0	92.0	109.0	84.5	96.5
35	67.5	42.5	92.5	109.5	85.0	97.0
36	68.0	43.0	93.0	110.0	85.5	97.5
37	68.5	43.5	43.5	110.5	86.0	98.0
38	69.0	44.0	44.0	111.0	86.5	98.5
39	69.5	44.5	44.5	111.5	87.0	99.0
40	70.0	45.0	45.0	112.0	87.5	99.5
41	70.5	45.5	45.5	112.5	88.0	100.0
42	71.0	46.0	46.0	113.0	88.5	100.5
43	71.5	46.5	46.5	113.5	89.0	101.0
44	72.0	47.0	47.0	114.0	89.5	101.5
45	72.5	47.5	47.5	114.5	90.0	102.0
46	73.0	48.0	48.0	115.0	90.5	102.5
47	73.5	48.5	48.5	115.5	91.0	103.0
48	74.0	49.0	49.0	116.0	91.5	103.5
49	74.5	49.5	49.5	116.5	92.0	104.0

FO						
	OSP-E Screw			OSP-E Belt		
X	E25	E32	E50	E25	E32	E50
50	75.0	50.0	50.0	67.0	92.5	104.5
51	75.5	50.5	50.5	67.5	93.0	105.0
52	76.0	51.0	51.0	68.0	93.5	105.5
53	76.5	51.5	51.5	68.5	94.0	106.0
54	77.0	52.0	52.0	69.0	94.5	106.5
55	77.5	52.5	52.5	69.5	95.0	107.0
56	78.0	53.0	53.0	70.0	95.5	107.5
57	78.5	53.5	53.5	70.5	96.0	108.0
58	79.0	54.0	54.0	71.	96.5	108.5
59	79.5	54.5	54.5	71.5	97.0	109.0
60	80.0	55.0	55.0	72.0	97.5	109.5
61	80.5	55.5	55.5	72.5	98.0	110.0
62	81.0	56.0	56.0	73.0	98.5	110.5
63	81.5	56.5	56.5	73.5	99.0	111.0
64	82.0	57.0	57.0	74.0	99.5	111.5
65	32.5	57.5	57.5	74.5	100.0	112.0
66	33.0	58.0	58.0	75.0	100.5	112.5
67	33.5	58.5	58.5	75.5	101.0	113.0
68	34.0	59.0	59.0	76.0	101.5	113.5
69	34.5	59.5	59.5	76.5	102.0	114.0
70	35.0	60.0	60.0	77.0	102.5	114.5
71	35.5	60.5	60.5	77.5	103.0	115.0
72	36.0	61.0	61.0	78.0	103.5	115.5
73	36.5	61.5	61.5	78.5	104.0	116.0
74	37.0	62.0	62.0	79.0	104.5	116.5
75	37.5	62.5	62.5	79.5	105.0	117.0
76	38.0	63.0	63.0	80	105.5	117.5
77	38.5	63.5	63.5	80.5	106.0	118.0
78	39.0	64.0	64.0	81.0	106.5	118.5
79	39.5	64.5	64.5	81.5	107.0	119.0
80	40.0	65.0	65.0	82.0	107.5	119.5
81	40.5	65.5	65.5	82.5	108.0	120.0
82	41.0	66.0	66.0	83.0	108.5	120.5
83	41.5	66.5	66.5	83.5	109.0	121.0
84	42.0	67.0	67.0	84.0	109.5	121.5
85	42.5	67.5	67.5	84.5	110.0	122.0
86	43.0	68.0	68.0	85.0	110.5	122.5
87	43.5	68.5	68.5	85.5	111.0	123.0
88	44.0	69.0	69.0	86.0	111.5	123.5
89	44.5	69.5	69.5	86.5	112.0	124.0
90	45.0	70.0	70.0	87.0	112.5	124.5
91	45.5	70.5	70.5	87.5	113.0	125.0
92	46.0	71.0	71.0	88.0	113.5	125.5
93	46.5	71.5	71.5	88.5	114.0	126.0
94	47.0	72.0	72.0	89.0	114.5	126.5
95	47.5	72.5	72.5	89.5	115.0	127.0
96	48.0	73.0	73.0	90.0	115.5	127.5
97	48.5	73.5	73.5	90.5	116.0	128.0
98	49.0	74.0	74.0	91.0	116.5	128.5
99	49.5	74.5	74.5	91.5	117.0	129.0

Note:

The dimension FO is derived from the last two digits of the stroke:

Example:

Stroke 1525 mm

For a cylinder OSP-E25 the adjacent table indicates that for $\mathrm{x}=25 \mathrm{~mm}$:
FO = 62,5 mm

SystemLife

The calculation for expected service life is achieved in three steps:

- Determination of the load factor L_{F} inserting actual values into the adjacent equation
- Determination of guidance constant K_{F}
- Calculation of the service life in km

Lubrication

For maximum system life, lubrication of the ball bushings must be maintained at all times.

Only high quality Lithium based greases should be used.
Lubrication intervals are dependant on environmental conditions (temperature, running speed, grease quality etc.) therefore the installation should be regularly inspected.

1. Calculation of load factor L_{F}

with combined loads, L_{F} should not exceed the value 1 .
2. Guidance constant K_{F}

Installation	guidance constant K_{F}	
	GDL 25, GDL 32	GDL 40, GDL 50
Horizontal	200	210
Sideways	250	320
Vertical	90	120

3. Service life calculation

Approximate service life is calculated using the following equation:
Service life $[\mathrm{km}]=\frac{K_{F}}{L_{F}{ }^{3}}$

Technical Data

The table shows the maximum permissible loads. If multiple moments and forces act upon the cylinder simultaneously, the following equation applies:
$\frac{M}{M_{\text {max }}}+\frac{M_{s}}{M_{s_{\text {max }}}}+\frac{M_{v}}{M_{v \max }}+\frac{L_{1}}{L_{1 \text { max }}}+\frac{L_{2}}{L_{2 \text { max }}} \leq 1$

The table shows the maximum permissible values for light, shock-free operation, which must not be exceeded even under dynamic conditions.

With a load factor of ≤ 1, the service life is 5000 km.
The sum of the loads should not exceed >1

Loads, Forces and Moments

Series	Max. Moments [Nm]		$\begin{array}{\|l\|} \hline \text { Max. Load } \\ {[\mathrm{N}]} \\ \text { L1, L2 } \\ \hline \end{array}$	Mass of drive with guide [kg] with 0mm strokeOSP-E OSP-E Belt Screw		$\|$inrease per 100 mm stroke 100 OSP-E OSP Belt Screw		Mass guidecarriage [kg]	Order No. PROLINE ${ }^{1)}$ forOSP-E Belt*	
PL 25	4419	44	986	1.9	1.8	0.33	0.40	0.75	20874	20856
PL32	8433	84	1348	3.6	3.7	0.58	0.70	1.18	20875	20857
PL50	287128	287	3582	8.9	8.8	1.00	1.32	2.50	20876	20859

Aluminium Roller Guide PROLINE

Series PL 25 to 50
for Linear Drive

- Series OSP-E Belt *
- Series OSP-E Screw

Features:

- High precision
- High velocities ($10 \mathrm{~m} / \mathrm{s}$)
- Smooth operation - low noise
- Integated wiper system
- Long life lubrication
- Compact dimensions - compatible to Slideline plain bearing guide
- Stainless steel version available on request
- Any length of stroke up to 3750 mm The maximum stroke lengths of drives OSP-E..B and OSP-E..S must be observed.

OSP-E Belt:
for position of guides see page 128.

For further information and technical data see data sheets for linear drives OSP-E Belt (page 51) and OSP-E Ball Screw (page 83)

[^5]

Dimension Table (mm) OSP-E-Screw PL25, PL32, PL50

Series	A	B	J	M	Z	AA	BB	DD	CF	EC	EE	EG	FF	FS	FT	GG	JJ	ZZ
PL25	100	22	117	40.5	M6	154	144	60	72.5	32.5	53	39	64	23	73.5	50	120	12
PL32	125	25.5	152	49	M6	197	187	80	91	42	62	48	84	25	88	64	160	12
PL50	175	33	200	62	M6	276	266	120	117	63	75	57	110	29	118.5	90	240	16

* Please note:

The dimension "AZ" must be added to "A". Stroke length to order is stroke + dimension "AZ" + safety clearance (See data sheet 1.20.002E-6, 1.25.002E-6)
Please also note the effect of dimension "AZ" when retrofitting a guide - contact your local HOERBIGER-ORIGA technical support department.

Dimension Table (mm) Series OSP-E-Belt PL25, PL32, PL50

Serie	A	B	J	M	Z	AA	AZ	BB	DD	CF	EC	EE	EG	FF	FS	FT	GG	JJ	KG	ZZ
PL25	125	22	117	40.5	M6	154	10	144	60	72.5	32.5	53	39	64	23	73.5	50	120	57	12
PL32	150	25	152	49	M6	197	11	187	80	91	42	62	48	84	25	88	64	160	61	12
PL50	200	25	200	62	M6	276	24	266	120	117	63	75	57	110	29	118.5	90	240	85	16

Mid-Section Support

Mid-section supports are required from a certain stroke length to prevent excessive deflection and vibration of the linear drive. The diagrams show the maximum permissible unsupported length in relation to loading.

Linear Drive Accessories Magnetic Switches

Type RS-

Type ES-.

For electrical sensing of the carrier position, e.g. at the end positions, magnetic switches may be fitted.

Position sensing is contactless and is based on magnets fitted as standard to the carrier. A yellow LED indicates operating status.

The universal magnetic switches are suitable for all HOERBIGER-ORIGA OSP-Actuators and aluminum profile rod type cylinders.

Piston speed and switching distance affect signal duration and should be considered in conjunction with the minimum reaction time of ancillary control equpiment.

Min. reactiontime $=\frac{$| Switching |
| :--- |
| distance |}{Piston speed}

HIEREIGEH Onile

Characteristics

Characteristics	Symbol	Unit	Description		
Electrical Characteristics			Type RS	Type ES	
Operating voltage	U_{B}	V	10-240 AC/DC (NO) 10-150 AC/DC (NC) 10-70 AC/DC (NO/NC)**	10-30 DC	
Connection			Two wire	Three wire	
Switching function			Normally open (NO) closing Normally closed (NC) opening	$\begin{aligned} & \hline \text { PNP } \\ & \text { NPN } \end{aligned}$	closing
Max. permanent switching current	$\mathrm{I}_{\text {max }}$	mA	200	200	
Max. switching capacity		VA (W)	10 VA	-	
Residual voltage at $I_{\text {Lmax }}$		V	<3	<3	
Max. current consumption		mA	-	<20	
Status indicator			LED, yellow		
Typical switching time		ms	on:<2	on:<2	
Switch-off delay		ms	-	ca. 25	
Pole reversal			LED does not work	-	
Pole reversal protection			-	Built in	
Short circuit protection			-	Built in	
Switchable capacity		$\mu \mathrm{F}$	0.1 at $100 \Omega, 24$ VDC		
Switching distance		mm	ca. 15	ca. 15	
Hysteresis for OSP		mm	ca. 8	ca. 3	
Mechanical Characteristics					
Housing			Macrolon, grey		
Insulation class			F to VDE 0580		
Connection*)Type RS-K			Cable,5mlong	3-pole Connector M8, *Cablelengthca. 100 mm	
Type RS-S			3-poleConnector M8, Cable length ca. $100 \mathrm{~mm}^{*}$		
Cable cross section (highly flexible)		mm ${ }^{2}$	2×0.14	3×0.14	
Cable (highly flexible)*)			PVC	PUR, black	
Wire colours			brown AC/DC+ blue or white signal output	Pin 1 =+,brown $\operatorname{Pin} 3=0 \mathrm{~V}$, blue Pin $4=$ Signal black or white	
Minimum permissible bending radius fixed		mm	≥ 20		
of cable moving		mm	≥ 70		
Switching point accuracy		mm	± 0.2		
Temperature range *) ${ }^{\text {1) }}$	$\begin{aligned} & \vartheta_{\text {min }} \\ & \vartheta_{\text {max }} \end{aligned}$	${ }^{\circ}{ }^{\circ} \mathrm{C}$	$\begin{array}{ll}-25 & \text { other temperature ranges } \\ +80 & \text { on request }\end{array}$		
Service life, switching cycles			$\begin{array}{\|l} \hline 3 \times 10^{6} \\ \text { up to } 6 \times 10^{6} \end{array}$	Theoretically unlimited	
Electrical protection		IP	67 according to DIN EN 60529		
Shock resistance		$\mathrm{m} / \mathrm{s}^{2}$	100 (contact switches)	500	
Weight (mass)		kg	0.12		

*) other versions on request
${ }^{* *}$) RS with connector (RS-S)
${ }^{1)}$ for the magnetic switch temperature range, please take into account the surface temperature and the self-heating properties of the linear drive.

Type RS

In the type RS contact is made by a mechanical reed switch encapsulated in glass.
Direct connection with 2-pole cable, 5 m long, open ended (Type RS-K). With 3-pole connector M8, cable length ca. 100 mm (Type RS-S).

Type ES

In the type ES contact is made by an electronic switch - without bounce or wear and protected from pole reversal. The output is short circuit proof and insensitive to shocks and vibrations. Connection is by 3 -pole connector for easy disconnection.
Fitted with connection cable 100 mm long with connector.
A 5 m cable with connector and open end can be ordered separately, or use the Order No. for the complete Type ES-S or RS-S with 5 m cable.

Magnetic Switches RS and ES

Electrical Service Life Protective Measures

Type RS magnetic switches are sensitive to excessive currents and inductions. With high switching frequencies and inductive loads such as relays, solenoid valves or lifting magnets, service life will be greatly reduced.

With resistive and capacitative loads with high switch-on current, such as light bulbs, a protective resistor should be fitted. This also applies to long cable lengths and voltages over 100 V .

In the switching of inductive loads such as relays, solenoid valves and lifting magnets, voltage peaks
(transients) are generated which must be suppressed by protective diodes, RC loops or varistors.

Connection Examples

Load with protective circuits
(a) Protective resistor for light bulb
(b) Freewheel diode on inductivity
(c) Varistor on inductivity
(d) RC element on inductivity

For the type ES, external protective circuits are not normally needed.

Electrical Connection, Type RS

Dimensions (mm) - Type RS-K

* Length with possible minus tolerance, see chart below

Dimensions (mm) - Type ES-S/RS-S**

Length with possible minus tolerance, see table below
** Operating voltage max. 70 V

Length of connection cable with length tolerance

Sensor Order-No.	Nominal cable length	Length tolerance
KL3045	5000 mm	-50 mm
KL3047	100 mm	-20 mm
KL3048	5000 mm	-50 mm
KL3054	100 mm	-20 mm
KL3060	145 mm	$\pm 5 \mathrm{~mm}$
KL3087	100 mm	-20 mm

Dimensions - Series OSP-E..BHD

Dimension Table (mm) and Order Instructions

Series		ensio			Order No.		
	RC	RD	RE	Normallyopen	Normally closed	PNP	NPN
OSP-E25	25	27	-	Type:	Type:	Type:	Type:
OSP-E32	31	34	-	RS-K	RS-K	ES-S	ES-S
OSP-E50	43	48	-	KL3045	KL 3048	KL 3054	KL3060
OSP-E25BHD	51	27	26	Type:	Type:		
OSP-E32BHD	63	34	32	RS-S	RS-S		
OSP-E50BHD	87	48	34	KL3047	KL3087		
Cable 5 m with connector and with open end for magnetic switch Typ ES-S/RS-S				4041			

Positioning of Sensors/Permanent Magnets - OSP-E..BHD

Drive Shaft Option = standard

Drive Shaft Option = non standard

Bi-Parting Version

Drive Shaft Option = standard

Drive Shaft Option = non standard
" M " indicates where magnet is fitted in carrier and in which two of the dovetail grooves magnetic switched can be placed. See also the adjacent dimension drawing.

Gearboxes \& Motor Mounts

Contents

Description	Page
Gearbox for BHD Series	$134-136$
Gearbox for OSP-E Belt	$137-140$
Motor Mounts	$141-142$
Belt Gear for OSP-E..S, SBR	143

PLANETARY GEARBOX FOR THE OSP-E BHD HEAVY DUTY ACTUATOR

A gearbox-mounting flange allows the LP series gearbox to be mounted directly to the actuator, eliminating the need for a coupling.

Motor mounting flange and reducing bush are custom made to suit the motor.

Please specify the motor manufacturer and model when ordering.

Note maximum shaft diameter below!

Type	Available Ratio	\mathbf{L}^{*}	\mathbf{W}^{*}	Weight
LP 070				
Single Stage	$3,5,10$	$96 / 103$	70	3.3
Double Stage	$15,25,30,50,100$	$116 / 123$	70	3.6
LP 090				
Single Stage	$3,5,10$	$115 / 125$	90	5.5
Double Stage	$15,25,30,50,100$	$141.5 / 151.5$	90	6.5
LP 120				
Single Stage	$15,5,10$	$148 / 158$	120	10.4
Double Stage	$180.5 / 190.5$	120	12.6	

L* Overall length will vary depending on the motor
W^{*} Standard dimension may vary depending on the motor
Above dimensions are for reference only. Consult factory for further information on all Gear Heads.

Order Number for OSP-E BHD Gearbox

ALWAYS STATE EXACT MOTORTYPE WHEN ORDERING GEAR!

Description		Reduction	Order Number
Planetary Gear	LP 070 1-stage	I=3:1	80001240
	LP 070 1-stage	$\mathrm{i}=5: 1$	80001252
	LP 070 1-stage	$\mathrm{i}=10: 1$	80001253
LP70 for BHD25	LP 070 2-stage	$\mathrm{l}=15: 1$	80001242
	LP 070 2-stage	$\mathrm{i}=25: 1$	80001254
	LP 070 2-stage	$1=30: 1$	80001243
	LP 070 2-stage	$i=50: 1$	80001255
	LP 070 2-stage	$\mathrm{i}=100: 1$	80001256
LP90 for BHD32	LP 090 1-stage	$1=3: 1$	80001244
	LP 090 1-stage	$\mathrm{i}=5: 1$	80001216
	LP 090 1-stage	$\mathrm{i}=10: 1$	80001257
	LP 090 2-stage	\|-15:1	80001245
	LP 090 2-stage	$\mathrm{i}=25: 1$	80001258
	LP 090 2-stage	$1=30: 1$	80001246
	LP 090 2-stage	$\mathrm{i}=50: 1$	80001259
	LP 090 2-stage	$\mathrm{i}=100: 1$	80001260
LP120 for BHD50	LP 120 1-stage	$\mathrm{l}=3: 1$	80001247
	LP 120 1-stage	$\mathrm{i}=5: 1$	80001250
	LP 120 1-stage	$\mathrm{i}=10: 1$	80001261
	LP 120 2-stage	$\mathrm{l}=15: 1$	80001248
	LP 120 2-stage	$\mathrm{i}=25: 1$	80001262
	LP 120 2-stage	$1=30: 1$	80001249
	LP 120 2-stage	$i=50: 1$	80001263
	LP 120 2-stage	$\mathrm{i}=100: 1$	80001264

Gearbox Mounting Flanges -

See New Ordering Instructions Position 4 for Shaft Type

		Shaft Type	
Gearbox flange to mount the LP series to BHD	LP70 for BHD25	K,L,M,N	12311
	LP90 for BHD32	K,L,M,N	12312
	LP120 for BHD50	K,L,M,N	12313

PLANETARY GEARBOX FOR THE OSP-E BELT ACTUATOR

A gearbox mounts directly to the actuator, eliminating the need for a coupling.

A simple adaptor flange and bushing allows NEMA 23 and 34 frame motors to be fitted.

The gearbox input shaft connects directly to the motor shaft and is secured using a split-clamping ring.

OSP-E Belt Gearbox				Series EG
Nominal Output Torque	T2n	$\begin{gathered} \mathrm{Nm} \\ (\mathrm{lb}-\mathrm{in}) \end{gathered}$	3:1, 10:1	$\begin{gathered} \hline 14 \\ (124) \\ \hline \end{gathered}$
			5:1, 7:1	$\begin{gathered} \hline 26 \\ (230) \end{gathered}$
Maximum Acceleration Torque	T2B	$\begin{gathered} \mathrm{Nm} \\ (\mathrm{lb}-\mathrm{in}) \end{gathered}$	3:1, 10:1	$\begin{gathered} 25 \\ (221) \end{gathered}$
			5:1, 7:1	$\begin{gathered} \hline 40 \\ (354) \end{gathered}$
Nominal Speed	n1max	RPM		3500
Maximum Speed	n1n	RPM		6000
Standard Output Backlash	j	arcmin	3:1-10:1	<10
Weight	m	kg (b)	1-stage	$\begin{gathered} 1.0 \\ (2.2) \end{gathered}$
Mass Moment of Inertia	J1	$\begin{aligned} & \mathrm{kgcm}^{2} \\ & \left(\mathrm{lb}-\mathrm{in}^{2}\right) \end{aligned}$	$\mathrm{i}=3$	$\begin{aligned} & 0.176 \\ & (0.06) \end{aligned}$
			$\mathrm{i}=5$	$\begin{gathered} \hline 0.15 \\ (0.051) \\ \hline \end{gathered}$
			$\mathrm{i}=7,10$	$\begin{gathered} \hline 0.138 \\ (0.047) \end{gathered}$
Ratios Available			1-stage: $3,4,5,7,10$	
Efficiency at Load			1-stage: 90\%	
Average Lifetime			>20,000 hours	
Lubrication			Mineral Grease EP0	
Protection Rating			IP 64	
Operating Temperature			$-20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$	

Actuator and Type	Available Ratio	\mathbf{L} $\mathbf{M a x}$	\mathbf{w} $\mathbf{M a x}$	Weight $\mathbf{K g}$
$\mathbf{2 5}$ Belt/Ballscrew				
Nema 23	$3,5,7,10$	108.3	70	1.3
Nema 34	$3,5,7,10$	115.8	85	1.46
SGMPH 01	$3,5,7,10$	110.8	70	1.3
SGMPH 02/04	$3,5,7,10$	115.8	85	1.46
32 Belt/Ballscrew				
Nema 23	$3,5,7,10$	109.8	70	1.3
Nema 34	$3,5,7,10$	112.3	85	1.46
SGMPH 01	$3,5,7,10$	117.3	85	1.46
SGMPH 02/04	$3,5,7,10$			
50 Belt/Ballscrew		111.8	70	1.3
Nema 23	$3,5,7,10$	119.3	85	1.46
Nema 34	$3,5,7,10$	119.3	85	1.3
SGMPH 01	$3,5,7,10$			1.46
SGMPH 02/04	$3,5,7,10$			

Gam Gear Heads have hollow shafts and do not require gearbox mounts
Gam Gear Heads are not to be used with BHD model actuators
Above dimensions are for reference only. Consult factory for further information on all Gear Heads.

Order Number for OSP-E Belt and Ballscrew Gearbox

Order Numbers	Description
25 Belt Actuator	
EG00003-B2523A	Gearbox 3:1 Ratio 25 Belt . 250 motor shaft
EG00005-B2523A	Gearbox 5:1 Ratio 25 Belt . 250 motor shaft
EG00007-B2523A	Gearbox 7:1 Ratio 25 Belt . 250 motor shaft
EG00010-B2523A	Gearbox 10:1 Ratio 25 Belt . 250 motor shaft
EG00003-B2523	Gearbox 3:1 Ratio 25 Belt . 375 motor shaft
EG00005-B2523	Gearbox 5:1 Ratio 25 Belt . 375 motor shaft
EG00007-B2523	Gearbox 7:1 Ratio 25 Belt . 375 motor shaft
EG00010-B2523	Gearbox 10:1 Ratio 25 Belt . 375 motor shaft
EG00003-B2534	Gearbox 3:1 Ratio 25 Belt . 375 motor shaft
EG00005-B2534	Gearbox 5:1 Ratio 25 Belt .375 motor shaft
EG00007-B2534	Gearbox 7:1 Ratio 25 Belt . 375 motor shaft
EG00010-B2534	Gearbox 10:1 Ratio 25 Belt . 375 motor shaft
32 Belt Actuator	
EG00003-B3223A	Gearbox 3:1 Ratio 32 Belt . 250 motor shaft
EG00005-B3223A	Gearbox 5:1 Ratio 32 Belt . 250 motor shaft
EG00007-B3223A	Gearbox 7:1 Ratio 32 Belt . 250 motor shaft
EG00010-B3223A	Gearbox 10:1 Ratio 32 Belt . 250 motor shaft
EG00003-B3223	Gearbox 3:1 Ratio 32 Belt . 375 motor shaft
EG00005-B3223	Gearbox 5:1 Ratio 32 Belt . 375 motor shaft
EG00007-B3223	Gearbox 7:1 Ratio 32 Belt . 375 motor shaft
EG00010-B3223	Gearbox 10:1 Ratio 32 Belt . 375 motor shaft
EG00003-B3234	Gearbox 3:1 Ratio 32 Belt . 375 motor shaft
EG00005-B3234	Gearbox 5:1 Ratio 32 Belt . 375 motor shaft
EG00007-B3234	Gearbox 7:1 Ratio 32 Belt . 375 motor shaft
EG00010-B3234	Gearbox 10:1 Ratio 32 Belt . 375 motor shaft
50 Belt Actuator	
EG00003-B5023	Gearbox 3:1 Ratio 50 Belt . 375 motor shaft
EG00005-B5023	Gearbox 5:1 Ratio 50 Belt .375 motor shaft
EG00007-B5023	Gearbox 7:1 Ratio 50 Belt .375 motor shaft
EG00010-B5023	Gearbox 10:1 Ratio 50 Belt . 375 motor shaft
EG00003-B5034	Gearbox 3:1 Ratio 50 Belt .375 motor shaft
EG00005-B5034	Gearbox 5:1 Ratio 50 Belt .375 motor shaft
EG00007-B5034	Gearbox 7:1 Ratio 50 Belt . 375 motor shaft
EG00010-B5034	Gearbox 10:1 Ratio 50 Belt . 375 motor shaft

Order Number for Yaskawa Metric Frame Motors Gearbox

The coupling housing is the mounting base for the motor and includes a self aligning coupling.
Motor flanges and couplings suitable for the available range of servo and stepper motors will be found together with technical data and dimensions on motors and drives, see separate data sheet.

Motor Mount	Size	Type	Motor Type	A	C	D	E
MES-2504	25	Belt	Metric 04	95.7	70	70	70
MES-3204	32	Belt	Metric 04	86.7	70	70	70
MES-5004	50	Belt	Metric 04	86.7	70	90	70
MES-5008	50	Belt	Metric 08	114.7	90	90	90
MEI-2523	25	Belt	Nema 23	76.7	70	70	70
MEI-3234	32	Belt	Nema 34	88.7	90	70	90
MEI-5034	50	Belt	Nema 34	83	90	90	90
MGM-3234	32	Belt	Nema 34	88.7	90	70	90
MGM-5034	50	Belt	Nema 34	88.7	90	90	90
MAS-2501	25	Screw	Metric 01	51.4	42	42	42
MAS-3204	32	Screw	Metric 04	86.7	70	70	70
MAS-5004P	50	Screw	Metric 04P**	88.7	90	90	90
MAS-5008	50	Screw	Metric 08	88.7	90	90	90
MAI-2517	25	Screw	Nema 17	51.4	42	42	42
MAI-3223	32	Screw	Nema 23	76.7	70	70	70
MAI-5034	50	Screw	Nema 34	88.7	90	90	90
MAS-5008P	50	Screw	Metric 08P**	88.7	120	90	120
MEI-5042	50	Belt	Nema 42	88.7	120	90	120
MAI-3101	32	Screw	Nema 34	86.7	90	70	90
MAI-3234	32	Screw	Nema 34	86.7	90	70	90
MEI-3223	32	Belt	Nema 23	76.7	70	70	70
MAI-2523	25	Screw	Nema 23	51.4	70	42	70
MGM-3223	32	Belt	Nema 23	76.7	70	70	70
MGM-5034S	50	Screw	Nema 34	88.7	90	90	90
MGM-3223S	32	Screw	Nema 23	86.7	70	70	70
MES-3208	32	Belt	Metric 08	88.7	90	90	90

[^6]
MOTOR MOUNTING PLATE DIMENSIONS

Motor Mount	Size	Type	Motor Type	G	H	J	K
MES-2504	25	Belt	Metric 04	$10-32$ UNF	70	50	3.5
MES-3204	32	Belt	Metric 04	$10-32$ UNF	70	50	3.5
MES-5004	50	Belt	Metric 04	$10-32$ UNF	70	50	3.5
MES-5008	50	Belt	Metric 08	$10-32$ UNF	90	70	3.5
MEI-2523	25	Belt	Nema 23	$10-32$ UNF	66.68	38.1	2
MEI-3234	32	Belt	Nema 34	$10-32$ UNF	98.42	73.08	2
MEI-5034	50	Belt	Nema 34	$10-32$ UNF	98.42	73.08	2
MGM-3234	32	Belt	Nema 34	$10-32$ UNF	98.42	73.08	2
MGM-5034	50	Belt	Nema 34	$10-32$ UNF	98.42	73.08	2
MAS-2501	25	Screw	Metric 01	M4	46	30	3
MAS-3204	32	Screw	Metric 04	$10-32$ UNF	70	50	3.5
MAS-5004P	50	Screw	Metric 04P**	$10-32$ UNF	90	70	3.5
MAS-5008	50	Screw	Metric 08	$10-32$ UNF	90	70	3.5
MAI-2517	25	Screw	Nema 17	*	43.8	22	2.5
MAI-3223	32	Screw	Nema 23	$10-32$ UNF	66.68	38.1	2
MAI-5034	50	Screw	Nema 34	$10-32$ UNF	98.42	73.08	2
MAS-5008P	50	Screw	Metric 08P**	M8 X125	145	110	4
MEI-5042	50	Belt	Nema 42	$.25-20$ UNC	127	55.58	2
MAI-3101	32	Screw	Nema 34	$10-32$ UNF	98.42	73.08	2
MAI-3234	32	Screw	Nema 34	$10-32$ UNF	98.42	73.08	2
MEI-3223	32	Belt	Nema 23	$10-32$ UNF	66.68	38.1	2
MAI-2523	25	Screw	Nema 23	$10-32$ UNF	66.68	38.1	2
MGM-3223	32	Belt	Nema 23	$10-32$ UNF	66.68	38.1	2
MGM-5034S	50	Screw	Nema 34	$10-32$ UNF	98.42	73.08	2
MGM-3223S	32	Screw	Nema 23	$10-32$ UNF	66.68	38.1	2
MES-3208	32	Belt	Metric 08	$10-32$ UNF	90	70	3.5

Linear Drive Accessories Belt Gear

Size 25, 32, 50

- For Series OSP-E..S, ST, SR, SBR

Belt Gear with freely selectable dimensions for Motor Mounting

- see dimension table with min.- and max. dimensions.

Note:

This gearbox is, as standard, designed for OSP-E-shaft with keyway.
Option:
With plain shaft (with clamping sleeve on the drive side).

Please note the corresponding OSP-E-shaft.

OSP-E Shaft for Belt Drive Unit (standard)		
Size	Option	Description
25	4	with keyway long version
32	3	with keyway
50	3	with keyway

Max. allowed Moments \mathbf{M} [Nm] for Belt Gear
Size Transmission ratio $1: 1$ 25 5 $2: 1$ 32 10 10 50 20 20

Beware of the max. allowed moments of the corresponding linear drive.

Dimensions

Dimension Table (mm)

Series	L1	L2	L3	La 1:1	$\mathbf{2 : 1}$	D3	Ø A*	Order-No.
OSP-E25	186	101	30	110	109.3		$6,7,8,9,10,11$	15576
OSP-E32	196	101	37	110	111.4	M4 - M10	$8,9,10,11,12,14$	15576
OSP-E50	234	101	50	135	133.7		$12,14,16,19$	15576

* other diameters on request

Variable Dimensions for Motor Mounting

Dimension Table for motor mounting dimensions (mm)

Dimension		$\begin{aligned} & \text { Size } \\ & 25 \mathrm{~S} \end{aligned}$		32S		50S	
		$\mathrm{W}=45^{\circ}$	$W=90^{\circ}$	$\mathrm{W}=45^{\circ}$	$W=90^{\circ}$	$\mathrm{W}=45^{\circ}$	$W=90^{\circ}$
Ø D1	min.	40		40		40	
	max. "M"	100	85	110	85	115	85
	max. "S"	106-Ød5	$80-Ø \mathrm{~d} 5$	106-Ød5	$80-Ø \mathrm{~d} 5$	106-Ød5	80-Ød5
Ø D2	min.	25		25		25	
	max.	80		80		80	
Ø D3	max.	M10		M10		M10	
ØA		6, 7, 8, 9, 10, 11		8, 9, 10, 11, 12, 14		12, 14, 16, 19	
Lm	min.	16		20		30	
Lm	max.	23		30		40	

Ordering Instructions / Part Numbering System for OSP Series Electric Actuators

serie		bore	lead		shaft	m
E	Electric	225	0	belt	0	right (belt)
		332	1		1	left (belt)
H	Heavy	550	2	5 mm BS	2	double (belt)
	Duty		3		3	
	Roller		4	10 mm BS	4	BHD Integrated Gearbox 3:1**
	Guide		5		5	BHD Integrated Gearbox 5:1**
	(BHD)		6	25mm BS	6	BHD Integrated Gearbox 10:1**
			7		7	
R	Heavy		8		8	
	Duty		9		9	
	Ball		A		A	STD (screw)
	Guide		B	BP (belt Bi-parting)	B	2 end (screw)
	(BHDII)		C		C	
			D		D	Clamp Shaft-Right (BHD)
S	Extending Rod Ballscrew (OSP-SBR)		E		E	Clamp Shaft-Left (BHD)
			F		F	Clamp Shaft-Close (BHD)
			G		G	Clamp Shaft-Open (BHD)
			H		H	
			J		J	
			K		K	Hollow Shaft-Right (BHD)
			L		L	Hollow Shaft-Left (BHD)
			M		M	Hollow Shaft-Close (BHD)
			N		N	Hollow Shaft-Open (BHD)
			P		P	Clamp Shaft-Right-IS (BHD)*
			Q		Q	Clamp Shaft-Left-IS (BHD)*
			R		R	Clamp Shaft-Close-IS (BHD)*
			S		S	Clamp Shaft-Open-IS (BHD)*
			T		T	Obsoleted (BHD)
			U		U	Obsoleted (BHD)
			V		V	Obsoleted (BHD)
			W		W	Obsoleted (BHD)
			X		X	
			Y		Y	
			Z	special	Z	special

$$
\begin{aligned}
& \text { Drive Shaft Options - OSP-E } \\
& 0= \\
& 2= \\
& 2=
\end{aligned}
$$

6 mount double mount
if single (all and BHD)
std mnt (nr20) (all and BHD)
floating mount (nr25) (all)
invert mount (nr30) (all)
invert float mount (nr35) (all) slideline (screw only)
ps25 (one mount, two carriages)(25)
ps35 (one mount, two carriages)(25,32)
ps44 (one mount, two carriages)(25,32)
ps60 (one mount, two carriages)(50)
ps76 (one mount, two carriages)(50)

Guideline (all)

[^7]

7* (BHD) Non-standard KB and KL dimensions must be specified on a separate line item (use " Z " in part number).
7^{*} (BHD) Order motor mount and/or gearbox as a separate line item (contact customer service).
7^{*} Contact customer service if non-standard motor mounting holes are required.
9* (BHD) Order supports as a separate line item.
9^{*} Only one end support is supplied in the OSP-E part number. If more than one is required, please order additional end supports as a separate line item.

Electric Actuator Application Sheet

Distributor:

Salesperson:

Phone:

Stroke: \qquad Time to make move: \qquad Load:
\qquad Incline:

End-User:

Fax:

Actuator type:
\square See Attached for info /a additional info
Special Features Required:

\square Switches

Type \qquad Qty. \qquad
\square Controller Needed
\square Servo Motor Needed
\square Stepper Motor Needed
\square Customer Supplied Motor

-
\square Check if load is externally supported

Advice, service and sales ... worldwide and round the clock

HOERBIGER-ORIGA CORPORATION • 100 West Lake Drive, Glendale Heights, IL 60139 • tel (630) 871-8300 • fax (630) 871-1515 • E-mail: info-hous-market@hoerbiger.com HOERBIGER-ORIGA GmbH • Sudliche Romerstraße $15 \bullet$ Postfach $1110 \bullet$ D- 86972 Altenstadt • tel $+49+8861$ 2211-0 • fax $+49+8861221-1305 \bullet$ E-mail: pneu@hoerbiger.de HOERBIGER-ORIGA PNEUMATIK GmbH • Johann-Giefing-Straße $12 \bullet$ A-2700 Wiener Neustadt • tel (02622) 26071 • fax $26071-5 \bullet$ E-mail: amarket@hoerbiger-origa.com HOERBIGER-ORIGA Ltd. \bullet Tewkesbury Industrial Estate \bullet Tewkesbury G1.20 8 ND , $\mathrm{GB} \bullet$ tel $+44+1684850000 \bullet$ fax $850555 \bullet$ E-mail: marketing @hoerbiger-origa.com HOERBIGER-ORIGA AB. • Box $67 \bullet$ S- 73622 Kungsor, Sweden • tel $+46227411400 \bullet$ fax $+4622741129 \bullet$ E-mail: semarket@hoerbiger-origa.com HOERBIGER-ORIGA GmbH • Industriestr. 8 •D-70794 Filderstadt • tel (07158) 1703-0 • fax 64870 • E-mail: dmarket@hoerbiger-origa.com Internet: http://www.hoerbigeroriga.com

OSPE0105

[^0]: *Other dimensions for KS on request

[^1]: *Other dimensions for KS on request

[^2]: * Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

[^3]: stroke [mm]
 rpm [rev/min]
 Speed [mm/s]

[^4]: * Dimension NN gives the possible plus and minus play in horizontal and vertical movement, which also makes tilting sideways possible.

[^5]: * Series PL for OSP-E Bi-parting version on request

[^6]: Dimensions are for reference purposes only
 Nema mounts match IMS stepper motors or equivalent
 Metric mounts match Yaskawa SGM Servo motors or equivalent
 *Drilled \& counterbored for 4-40 socket head cap screw from opposite side
 MGM = Gearbox mount

[^7]: *For use with intermediate shaft
 **Consult factory before ordering

