

Electric Linear Solutions

High Performance Electric Solutions with PHD Proven Technology

ESG Slides

ESK/ESL Slides

ECVA Cylinders

Easy 3 Step Actuator & Motor Selection! ECVR Cylinders

ISO-9001
CERTIFIED
Quality Management
System Certified

Easy 3 Step Actuator & Motor Sizing

phdplus.phdinc.com

Using PHD's 3 step process, you can specify the actuator configured for your particular motor brand.

ONLINE SIZING:

Go to sizing.phdinc.com and input your application requirements

Suitable actuator and motor performance requirements are provided.

SELECT A MOTOR: You choose the brand of motor and controls

ONLINE CONFIGURATOR:

Go to config.phdinc.com after motor verification. a W-code is assigned for ordering.

E C VA 5 32 x 500 - RB010 - T44 - QF21 - Wxxxx

See page 12 for more details.

Since 1957, PHD continues to be a leader in the industrial automation industry. Known for durable, high quality, pneumatic and hydraulic actuators, customers trust PHD to deliver the best possible product when they need it.

OUR MOTOR

With this in mind, PHD introduces the PHD Plus electric actuator line. PHD Plus products are built on the foundation of proven pneumatic designs and components but now electrically driven. Also new, PHD introduces Your Motor, Your Way, a simple 3-step process allowing users to employ PHD's proven technology operated by the motor and controls of their choice. This saves time and money by eliminating the need to learn or place into service a new motor and controls platform. With Your Motor, Your Way integration into an existing controls system is quick and easy. If you prefer a complete package, your local PHD distributor can provide motors and controls to fit your application needs. This all provides the best offering of electrically driven linear products with the flexibility to

> PHD can also supply you with accurate CAD models from our online CAD configurator. It is that easy!

configure Your Motor, Your Way!

SERIES ECV CYLINDER

The Series ECV Cylinder is an electromechanical rod style actuator with an ISO/VDMA mounting interface.

The Series ECV is available in three sizes with a choice of two high precision ball screws per size optimized for high speed or high thrust. Travels are available up to 1000 mm. A large choice of cylinder mounting accessories is available to simplify machine design.

Cutaway and Benefits4
Ordering Data5
Engineering Data 6
Performance Charts7
Dimensions 8
Options9-12
Accessories/Switches13-21

SERIES ESK/ESL SLIDE

The Series ESK/ESL Slide is an electromechanical cantilever style actuator featuring precision ground guide shafts and ball bushings for smooth, accurate linear motion. The Series ESK/ESL is available in three sizes with a choice of two high precision ball screws per size optimized for high speed or high thrust. Travels are available up to 700 mm.

Cutaway and Benefits22
Ordering Data23
Engineering Data 24
Performance Charts 25-27
Dimensions 28-29
Options 30-33
Accessories/Switches 34-35

SERIES ESG SLIDE

The Series ESG Slide is an electromechanical gantry style actuator with precision ground guide shafts and ball bushings for smooth, accurate linear motion. The Series ESG is available in three sizes with a choice of two high precision ball screws per size optimized for high speed or high thrust. Travels are available up to 900mm.

Cutaway and Benefits36
Ordering Data37
Engineering Data
Performance Charts 39-40
Dimensions 41
Options 42-45
Accessories/Switches 46

Optimal design provides

superior speeds, thrust,

SERIES ECVA & ECVR CYLINDER

simplified motor mounting system with online sizing and configurator

double row angular contact ball bearing (high axial-thrust load capacity)

and travel lengths. Fit and functional replacement for pneumatic

VDMA/ISO cylinder.

polymer bushing

anodized aluminum extrusion

rolling contact anti-rotation assembly (minimal frictional loss - ECVA only) ball nut lubrication port

shock pads on both extend and retract for crash protection

precision ball nut with wiper seals for increased lube retention and life

ball nut assembly fully guided for optimum alignment and stability over long travels and high speeds

precision rolled ball screw

floating bearing

(wear compensating design)

zinc-plated screws

chrome-plated steel rod

zinc-plated rod end customizable - see options

Major Benefits

ISO/VDMA mounting

rod wiper seal

interface

- · High thrust and speed capability
- · 1000 mm travel lengths available
- · Available in cantilever (ESK/ESL) and gantry (ESG) slide configurations
- · Rigid construction with extremely low backlash
- · Very high degree of repeatability
- · High precision ball screw assemblies with long service life
- IP50 ingress protection
- ISO/VDMA mounting interface for easy interchange
- · Non-rotating rod or rotating rod versions
- · Inline and foldback motor mounting flexibility
- Your Motor, Your Way for online configuration of motor mounting plates, with a database of electric motors from major manufacturers
- · Large choice of options/accessories similar to pneumatic Series CV Cylinder
- · Switch ready standard

Applications

- Assembly
- · Die cut
- · Dispensing/filling
- · Diverting
- Drilling
- · Inspection/measurement
- Joining/fastening
- · Labeling/marking
- Part loading, sorting, clamping, positioning
- Tool change
- · Valve control

Foldback available in 1:1 or 2:1 drive for tailored performance.

Industry/Process Uses

- · Automotive
- Conveying
- · Electronics
- Food/beverage
- Machine tool
- Medical

- Packaging
- Pharmaceutical
- Plastics
- · Robotic tooling
- Semiconductor
- · Special machines

ORDERING DATA: SERIES ECV CYLINDER

TO ORDER SPECIFY:

ENGINEERING DATA: SERIES ECV CYLINDER

SERIES SPECIFICATIONS	ECVA	ECVR ¹⁰							
PISTON ROD	Non-Rotating	Rotating							
REPEATABILITY ¹	±0.0004 in	[±0.01 mm]							
MAXIMUM BACKLASH ²	BACKLASH ² 0.001 in [0.025 mm]								
RATED LIFE	Refer to Life vs. Thru	ust Chart (next page)							
FULL TRAVEL TOLERANCE ⁸	+0.138/-0.000 ir	[+3.5/-0.0 mm]							
DUTY CYCLE	10	0%							
OPERATING TEMPERATURE	40 - 150°F	[4 - 65°C]							
LUBRICATION INTERVAL ³	Horizontal: 100 million in [2500 km	n], Vertical: 60 million in [1500 km]							
ENCAPSULATION CLASS	IP	50							

	ODECIFICATIONS	SERIES ECV SIZE										
	SPECIFICATIONS	32 ו	nm	40	mm	50	mm					
	MAXIMUM TRAVEL in [mm]	39.37 [1000]										
MECHANICS	DRIVE MECHANISM	Ball Screw										
¥	SCREW DIAMETER mm	1	2	1	6	20						
	SCREW CONFIGURATION	-RB005	-RB010	-RB010	-RB016	-RB010	-RB020					
2	SCREW LEAD mm	5	10	10	16	10	20					
ED4	MAXIMUM SPEED in/sec [mm/ sec] MAXIMUM RPM rev/min	19.6 [500]	39.3 [1000]	39.3 [1000]	63.0 [1600]	39.3 [1000]	78.7 [2000]					
	MAXIMUM RPM rev/min			60	00							
RUST5	MAXIMUM THRUST Ibf [N]	306 [1360]	153 [680]	546 [2430]	342 [1520]	991 [4410]	564 [2510]					
THE	NOMINAL THRUST ⁶ Ibf [N]	90 [400]	74 [330]	285 [1270]	219 [975]	413 [1835]	341 [1515]					
QUE	PERMISSIBLE DRIVE TORQUE ⁷ in-lb [Nm]	10.62 [1.20]		38.06	[4.30]	69.03	[7.80]					
\sim	NO-LOAD TORQUE in-lb [Nm]	0.89	[0.10]	2.21	[0.25]	3.54	[0.40]					
_	TOTAL @ ZERO STROKE (WoT) Ib [kg]	2.55	[1.16]	3.29	[1.49]	5.20	[2.36]					
GFT	TOTAL LENGTH ADDER (WLT) Ib/in [kg/mm]	0.19 [0	0.0034]	0.26 [0.0046]	0.40 [0	0.0071]					
WEI	MOVING @ ZERO STROKE (Wom) Ib [kg]	0.66	[0.30]	1.14	[0.52]	2.15	[0.98]					
_	MOVING LENGTH ADDER (WLM) Ib/in [kg/mm]	0.038 [0.058		0.111 [
	ACTUATOR @ ZERO STROKE (J ₀) lb-in ² [kg-m ²]	0.010 [3.	00 x 10 ⁻⁶]		.50 x 10⁻⁵]	0.165 [4.	84 x 10 ⁻⁵]					
	LENGTH ADDER (JL) Ib-in²/in [kg-m²/mm]	0.0009 [9	.85 x 10 ⁻⁹]	0.0025 [2	2.90 x 10 ⁻⁸]	0.0069 [7						
\exists	MOVING WEIGHT lb-in ² /lb	9.63 x 10 ⁻⁴	3.85 x 10 ⁻³	3.85 x 10 ⁻³	9.86 x 10 ⁻³	3.85 x 10 ⁻³	1.54 x 10 ⁻²					
EB	ADDER (J _M) [kg-m ² /kg]	[6.21 x 10 ⁻⁷]	[2.48 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[6.36 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[9.93 x 10 ⁻⁶]					
2	MATAB		40 x 10 ⁻⁵]		.71 x 10⁻⁵]	0.159 [4.						
	CONFIGURATION (Jo) -UF21 ID-In* [Kg-m²]		75 x 10⁻⁵]		.28 x 10⁻⁵]	0.654 [1.						
	-QL11	0.011 [3.	14 x 10 ⁻⁶]	0.021 [6	.11 x 10 ⁻⁶]	0.138 [4.	04 x 10 ⁻⁵]					

NOTES:

- 1) UNIDIRECTIONAL AT MODERATE SPEEDS AND LOADS 2) AXIAL FREE PLAY WHEN DRIVE SHAFT LOCKED
- 3) REFER TO OPERATING INSTRUCTIONS FOR RE-LUBRICATION DETAILS
- 4) REFER TO SPEED VS. TRAVEL CHART ON NEXT PAGE
- 5) REFER TO LIFE VS. THRUST CHART ON NEXT PAGE
- 6) 100 MILLION INCHES [2500 km] LIFE 7) CORRESPONDS TO MAXIMUM THRUST
- FOR HOMING AND INCREASED APPLICATION FLEXIBILITY, INCLUDE EXTRA TRAVEL WHEN NECESSARY.
- ALL DIMENSIONS ARE FOR REFERENCE ONLY UNLESS SPECIFICALLY TOLERANCED. REFER TO ONLINE SIZING SOFTWARE FOR ACTUAL VALUES.
- 10) SERIES ECVR REPEATABILITY AND BACKLASH A FUNCTION OF COUPLING RIGIDITY TO EXTERNAL

WEIGHT AND INERTIAL CALCULATIONS:

NON-ROTATING LOAD. TOTAL WEIGHT = WoT + (WLT x TRAVEL) + MOTOR MOUNT WEIGHT [reference pages 10 and 11] TOTAL MOVING WEIGHT = Wom + (WLM X TRAVEL) + EXTERNAL PAYLOAD

FOR -Qx11: INERTIA $_{Reflected}$ = Jo + (J $_{L}$ X TRAVEL) + (J $_{M}$ X TOTAL MOVING WEIGHT) + Jo

FOR -QF21: INERTIA $_{Reflected}$ = [Jo + (JL X TRAVEL) + (JM X TOTAL MOVING WEIGHT)] / 4 + Jo

Series ECVR (rotating rod)

The ECVR requires the external payload to provide non-rotation to the system. This payload must be rigidly coupled to the rod to ensure axial motion. Any rotation will directly affect the performance of the system and result in lost motion.

PERFORMANCE CHARTS: SERIES ECV CYLINDER

This section contains information on the capabilities of the Series ECV. It is not intended to be a comprehensive selection guide. To make the selection process simple and quick, refer to PHD's sizing software. You may request application assistance from your distributor or PHD's Customer Service Department. Use the Application Data Fax Sheet at the back of this catalog for application sizing.

Size 32- RB005Size 32- RB010Size 40- RB010

Size 40- RB016Size 50- RB010Size 50- RB020

DIMENSIONS: SERIES ECV CYLINDER

The Series ECV is available as a driver only or with inline or foldback *Your Motor, Your Way* configurations. These dimensions apply to the driver portion for all standard units.

SIZE	A MAX	AM	ØB	ØBA	B2	BG MIN	С	ØD	E	f2	f8	f9	f12	G	Н	J	KK	ØL	R	RT	sw	VA	VD	WH
32	.727	.827	1.178	1.178	.630	.709	.197	.750	1.949	.729	5.906	.168	.236	1.221	1.101	.984	M10 x	.236	1.280	M6 x	.394	.319	.179	1.024
32	[18.5]	[21.0]	[29.9]	[29.9]	[16.0]	[18.0]	[5.0]	[19.1]	[49.5]	[18.5]	[150.0]	[4.3]	[6.0]	[31.0]	[28.0]	[25.0]	1.25	[6.0]	[32.5]	1	[10.0]	[8.1]	[4.5]	[26.0]
40	.818	.906	1.374	1.374	.709	.709	.236	.875	2.205	.804	6.730	.166	.256	1.358	1.238	1.102	M12 x	.393	1.496	M6 x	.512	.319	.184	1.181
	[20.8]	[23.0]	[34.9]	[34.9]	[18.0]	[18.0]	[6.0]	[22.2]	56.0	[20.4]	[170.9]	[4.2]	[6.5]	[34.5]	[31.4]	[28.0]	1.25	[10.0]	[38.0]	1	[13.0]	[8.1]	[4.7]	[30.0]
50	1.091	1.220	1.571	1.912	.945	.787	.315	1.125	2.697	1.085	7.598	.226	.315	1.358	1.358	1.364	M16 x	.472	1.831	M8 x	.630	.359	.183	1.457
	[27.7]	[31.0]	[39.9]	[48.6]	[24.0]	[20.0]	[8]	[28.6]	[68.5]	[27.6]	[193.0]	[5.7]	[8.0]	[34.5]	[34.5]	[34.6]	1.5	[12.0]	[46.5]	1.25	[16.0]	[9.1]	[4.6]	[37.0]

NOTES

- 1) NUMBERS SHOWN IN \bigcirc INDICATE CYLINDER POSITIONS.
- 2) DIMENSIONS: inch [mm]

RBXXX SCREW CONFIGURATION

The ball screw drive system of the Series ECV is available in two lead choices. This provides flexibility when matching velocity and load requirements to the application. Refer to product specifications and sizing software for performance parameters.

E C VA 5 32 x 500 - RB010 - T44 - QF21 - Wxxxx

High lead for speed

Low lead for thrust

K EXTRA ROD EXTENSION

Extra rod extension can be achieved by specifying the option -K followed by the length code. Rod extension is available in 1 mm increments (250 mm max). Rod extension can impact load capacity, therefore rod extension and travel should not exceed 1000 mm.

Length Code

K5 = 5 mm extra rod extension K15 = 15 mm extra rod extension

BORE	W	/H
[mm]	in	mm
32	1.024	26.0
40	1.181	30.0
50	1.457	37.0

T44 FEMALE ROD END

This option provides a female rod end in place of the standard male rod end. See catalog dimensional page for standard rod end. This rod end deviates from ISO 6431/VDMA 24562.

E C VA 5 32 x 500 - RB010 - T44 - QF21 - Wxxxx

T44 FEMALE ROD END

TEE MALE OVERSIZE ROD END

This option provides a male oversize thread rod end in place of the standard male rod end. See catalog dimensional pages for standard rod end. This rod end deviates from ISO 6431/VDMA 24562.

E C VA 5 32 x 500 - RB010 - TEE - QF21 - Wxxxx

TEE MALE OVERSIZE ROD END

LETTER	BORE SIZE												
DIM	32 r	nm	40 ı	nm	50 mm								
AL	.827	[21.0]	.906	[23.0]	1.220	[31.0]							
D1	.447	[11.35]	.599	[15.22]	.757	[19.23]							
f12	.236	[6.0]	.256	[6.5]	.315	[8.0]							
K4	[M8 x	1.25]	[M10	x 1.5]	[M12)	(1.75]							
K5	[M12 x	(1.25]	[M16	x 1.5]	[M20 :	x 1.5]							
DD min	.551	[14.0]	.669	[17.0]	.748	[19.0]							
WH	WH 1.024 [26.0]		1.181	[30.0]	1.457	[37.0]							

NOTE: DIMENSIONS: inch [mm]

FOLDBACK MOTOR MOUNTING WITH 1:1 DRIVE RATIO

FOLDBACK MOTOR MOUNTING WITH 2:1 DRIVE RATIO

Foldback motor mounting with the QF11 option provides a 1:1 drive ratio allowing similar performance to the inline motor mounting in a shorter overall length. The QF21 option provides a 2:1 drive ratio reduction for applications that require higher thrust. Foldback motor mounting also provides a VDMA 24562 compliant mounting pattern that allows the use of many standard cylinder mounting accessories. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

																-wut	IUU RLAN	KWUTU	KIMUUNI	ING
SIZE	f8	MMD MIN	MMD MAX	ММЕ	MMF	MMG	ММН	MMJ 1:1	MMJ 2:1	ММК	(MML)	MMR	MMRT	MMBG	WEIGHT lb [kg]	MMD Blank	MMU 1:1	MMU 2:1	MMV 1:1	MMV 2:1
00	5.905	.374	1.241	.374	2.185	2.480	1.220	2.854	2.776	4.094	5.315	1.280	MO V 4	.453	2.25	.533	.236	.236	1.330	.892
32	[150.0]	[9.5]	[31.5]	[9.5]	[55.5]	[63.0]	[31.0]	[72.5]	[70.5]	[104.0]	[135.0]	[32.5]	M6 X 1	[11.5]	[1.02]	[13.5]	[6.0]	[6.0]	[33.8]	[22.7]
40	6.730	.374	.886	.374	2.539	3.150	1.378	3.350	3.303	4.925	6.303	1.496	M6 X 1	.453	3.74	.591	.315	.236	1.644	1.080
40	[170.9]	[9.5]	[22.5]	[9.5]	[64.5]	[80.0]	[35.0]	[85.1]	[83.9]	[125.1]	[160.1]	[38.0]	IVIOAI	[11.5]	[1.70]	[15.0]	[8.0]	[6.0]	[41.8]	[27.4]
F0	7.598	.374	.886	.374	2.677	3.386	1.732	4.035	4.386	6.079	7.811	1.831	M8 X	.571	5.22	.591	.315	.236	1.644	1.330
50	[193.0]	[9.5]	[22.5]	[9.5]	[68.0]	[86.0]	[44.0]	[102.5]	[111.4]	[154.4]	[198.4]	[46.5]	1.25	[14.5]	[2.37]	[15.0]	[8.0]	[6.0]	[41.8]	[33.8]

- YOUR MOTOR, YOUR WAY MOTOR MOUNT -QFXX IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO CYLINDER.
- KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE TO DRIVER BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- WHEN (-W0000) IS SPECIFIED, PULLEY ID IS SUPPLIED WITH UNFINISHED ID Ø MMU AND MOTOR MOUNTING PLATE IS SUPPLIED WITHOUT MOTOR MOUNTING FEATURES.
- DIMENSIONS: inch [mm]

QL11 INLINE MOTOR MOUNTING WITH 1:1 DRIVE RATIO

Inline motor mounting with the QL11 option provides a 1:1 drive ratio with the lowest overall unit weight and height for high speed applications. The simple, low inertia design of the inline motor mounting allows for a cost effective solution with minimal assembly time. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

NG vides a height

E C VA 5 32 × 500 - RB 010 - T44 - QL 11 - Wxxxx

									-W0000	BLANK MO	TOR MOUNTING				
SIZE	f8	мма	MMA WITH	ММВ	ММВ	MI	ММС		MMC		MMC		ММВ	MMT	MMT MAX Shaft Ø
SIZE	10	IVIIVIA	F MOUNT	MAX	MIN	STANDARD OVERSIZE		lb [kg]	BLANK	MIN	ALLOWED				
32	5.905	1.949	2.126	1.000	.335	2.362	2.756	1.00	.842	.157	.472				
32	[150.0]	[49.5]	[54.0]	[25.4]	[8.5]	[60.0]	[70.0]	[0.45]	[21.4]	[4.0]	[12.0]				
40	6.730	2.087	2.264	1.400	.335	2.756	3.465	1.44	.890	.197	.630				
40	[170.9]	[53.0]	[57.5]	[35.6]	[8.5]	[70.0]	[88.0]	[0.65]	[22.6]	[5.0]	[16.0]				
50	7.598	3.234	3.451	1.400	.335	3.465	4.331	3.00	1.181	.236	.945				
30	[193.0]	[82.1]	[87.7]	[35.6]	[8.5]	[88.0]	[110.0]	[1.36]	[30.0]	[6.0]	[24.0]				

NOTES:

- 1) YOUR MOTOR, YOUR WAY MOTOR MOUNT -QL11 IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO CYLINDER.
- 2) KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE TO DRIVER BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- 3) WHEN (-W0000) IS SPECIFIED, COUPLER ID IS SUPPLIED WITH UNFINISHED ID Ø MMT AND MOTOR MOUNTING PLATE IS SUPPLIED AT MMC "OVERSIZE" AND WITHOUT MOTOR MOUNTING FEATURES.
- 4) REFER TO CAD MODEL FOR ACTUAL DIMENSIONS.5) DIMENSIONS: inch [mm]
- Typical Kit Contents
 Contents will vary with selected motor.

phdplus.phdinc.com

(-W0000) Blank motor mounting plate

Your Motor, Your Way customizable motor mounting is generated by PHD's extensive motor database at www.config.phdinc. com. Users may select their compatible motor of choice from the pre-populated motor database. In the event the chosen motor is not in the database, they may enter necessary motor features to generate the PHD motor code.

The tailored motor mounting components are included with the specified driver and shipped in kit form.

E C VA 5 32 x 500 - RB010 - T44 - QF21 - Wxxxx

Step 1 - Online Actuator Sizing sizing.phdinc.com

- Input your application data.
- The sizing software will tell you which actuator and motor performance parameters are needed for your application.

Step 2 - Motor Selection

- Based on the performance requirements determined by online sizing, select an appropriate motor from your preferred motor manufacturer.
- Return to the online sizing software with identified motor parameters to verify motor to application compatibility.

Step 3 - Your Motor, Your Way Configurator config.phdinc.com

- Select your motor from the drop down menus or enter the necessary motor geometry.
- The generated motor code for the compatible motor will complete the ordering data necessary to order the actuator tailored to your specific application.
- 3D CAD models are also available.

If a blank motor mount is desired for special motor requirements, use
 -W0000 to order a motor mount intended for customer modification.

Your Motor, Your Way

phdplus.phdinc.com

MOTOR GEOMETRY

BASE MOUNTING KIT

NOTE: BASE MOUNTING KIT BRACKET ADDS TO OVERALL LENGTH.

INLINE

FOLDBACK

LETTER DIM			BORE	SIZE			
LLIILN DIW	32	mm	40	mm	50 mm		
AB	.270	[6.87]	.369	[9.37]	.369	[9.37]	
TG1	1.280	[32.5]	1.496	[38.0]	1.831	[46.5]	
E MAX	3.165	[80.4]	3.726	[94.6]	4.291	[109.0]	
TR	2.579	[65.5]	2.953	[75.0]	3.445	[87.5]	
AO MAX	.332	[8.4]	.451	[11.5]	.450	[11.4]	
AU	.945	[24.0]	1.102	[28.0]	1.26	[32.0]	
AH	1.26	[32.0]	1.417	[36.0]	1.772	[45.0]	
AT	0.177	[4.5]	0.177	[4.5]	0.217	[5.5]	
SA1	7.795	[198.0]	8.934	[226.9]	10.118	[257.0]	
SA2	9.98	[253.5]	11.473	[291.4]	12.795	[325.0]	
XA1	7.874	[200.0]	9.013	[228.9]	10.315	[262.0]	
XA2	10.059	[255.5]	11.552	[293.4]	12.992	[330.0]	
KIT NO.*	83217	-01-01	83217	-02-01	83217-03-01		

^{1) *}KIT INCLUDES BRACKET AND CYLINDER MOUNTING HARDWARE FOR ONE END ONLY.
2) DIMENSIONS: inch [mm]

FASTENER MOUNTING KIT (PER ISO 6431)

MX1

Fastener mounting kit can be used on the rod end of all units. This kit can also be used on the motor end of -QFxx units.

SIZE	BB MIN	BC	DD	TG	KIT NO.*
32	.669	.985	M6 x 1.0	1.280	83213-01-01
52	[17.0]	[25.0]	IVIO X 1.0	[32.5]	03213-01-01
40	.669	.985	M6 x 1.0	1.496	83213-01-01
40	[17.0]	[25.0]	IVIO X 1.U	[38.0]	03213-01-01
E0	.906	1.236	M8 x	1.831	83213-02-01
50	[23.0]	[31.4]	1.25	[46.5]	03213-02-01

NOTES

- 1) *KIT INCLUDES STUD AND NUTS FOR ONE END ONLY.
- 2) ROD END MOUNTING (BB) COMPLIES WITH ISO 6431, REAR MOUNTING (BC) DOES NOT.
- 3) REQUIRES -QFxx FOR REAR MOUNTING.
- 4) DIMENSIONS: inch [mm]

FLANGE MOUNTING KIT (PER VDMA 24562)

				LET	TTER DIME	NSION/TO	DLERANCE			
SIZE	d1/H11	FB/H13	TG1	E MAX	R/JS14	MF	TG/JS14	UF MAX	W	KIT NO.*
32	1.181	.276	1.280	1.969	1.260	.394	2.520	3.386	.630	83219-01-01
52	[30.0]	[7.0]	[32.5]	[50.0]	[32.0]	[10.0]	[64.0]	[86.0]	[16.0]	03219-01-01
40	1.378	.354	1.496	2.283	1.417	.394	2.835	3.780	.787	83219-02-01
40	[35.0]	[9.0]	[38.0]	[58.0]	[36.0]	[10.0]	[72.0]	[96.0]	[20.0]	03219-02-01
50	1.575	.354	1.831	2.756	1.772	.472	3.543	4.528	.984	83219-03-01
30	[40.0]	[9.0]	[46.5]	[70.0]	[45.0]	[12.0]	[90.0]	[115.0]	[25.0]	00213-00-01

NOTES:

- 1) *KIT INCLUDES CYLINDER MOUNTING HARDWARE FOR ROD END ONLY.
- 2) DIMENSIONS: inch [mm]

REAR MALE HINGE MOUNTING KIT (PER VDMA 24562)

	_					_
	0)			(9
/-			 	>	ı	
•		(<u> </u>	_		
_			Ŀ		T 	
					1	
	0) —	-	(0

	LETTER DIMENSION/TOLERANCE												
SIZE	E MAX	EW MAX	TG1	FL (±0.2 mm)	L MIN	CD/H9	MR MAX	KIT NO.*					
32	1.969	1.024	1.280	.866	.472	.394	.433	83218-01-01					
32	[50.0]	[26.0]	[32.5]	[22.0]	[12.0]	[10.0]	[11.0]	03210-01-01					
40	2.283	1.102	1.496	.984	.591	.472	.512	83218-02-01					
40	[58.0]	[28.0]	[38.0]	[25.0]	[15.0]	[12.0]	[13.0]	03210-02-01					
50	2.756	1.260	1.831	1.063	.591	.472	.512	83218-03-01					
50	[70.0]	[32.0]	[46.5]	[27.0]	[15.0]	[12.0]	[13.0]	03210-03-01					

NOTES:

- 1) *KIT INCLUDES CYLINDER MOUNTING HARDWARE.
 2) REAR MALE HINGE IS COMPATIBLE WITH MP2 MOUNTING AND MP2 PIVOT PIN.
- 3) REQUIRES -QFxx OPTION
- 4) DIMENSIONS: inch [mm]

PILLOW BLOCK MOUNTING KIT (PER CETOP 107 P)

						L	ETTER D	IMENSI	ON/TOL	ERANCE				
SIZE	CK/ H9	K1/ JS14	K2 Max	G1/ JS14	f5 MAX	G2	EM MAX	G3 Max	CA/ JS15	Н6	R1 Max	FL	FASTENER	KIT NO.*
22	.394	1.496	2.008	.827	.063	.709	1.016	1.220	1.260	.315	.394	.866	M6	62818-001-00
32	[10.0]	[38.0]	[51.0]	[21.0]	[1.6]	[18.0]	[25.8]	[31.0]	[32.0]	[8.0]	[10.0]	[22.0]	IVIO	02010-001-00
40	.472	1.614	2.126	.945	.063	.866	1.094	1.378	1.417	.394	.433	.984	MC	60010 000 00
40	[12.0]	[41.0]	[54.0]	[24.0]	[1.6]	[22.0]	[27.8]	[35.0]	[36.0]	[10.0]	[11.0]	[25.0]	M6	62818-002-00
50	.472	1.969	2.559	1.299	.063	1.181	1.252	1.772	1.772	.472	.512	1.063	•	62818-003-00
50	[12.0]	[50.0]	[65.0]	[33.0]	[1.6]	[30.0]	[31.8]	[45.0]	[45.0]	[12.0]	[13.0]	[27.0]	IVIO	02010-003-00

- 1) *KIT DOES NOT INCLUDE MOUNTING FASTENERS OR PIVOT PIN
- 2) BMP4 PILLOW BLOCK IS COMPATIBLE WITH MP2 REAR FORK 3) REQUIRES -QFxx OPTION
- 4) DIMENSIONS: inch [mm]
- 5) MOUNTING IS FUNCTIONAL IN INDICATED ORIENTATION ONLY

REAR FORK MOUNTING KIT (PER VDMA 24562)

		LETTER DIMENSION/TOLERANCE													
SIZE	A MAX	E MAX	UB/h14	CB/H14	TG1	FL [±0.2 mm]	L MIN	CD/H9	MR MAX	KIT NO.*					
32	2.559	1.969	1.772	1.024	1.280	.866	.472	.394	.433	83214-01-01					
32	[65.0]	[50.0]	[45.0]	[26.0]	[32.5]	[22.0]	[12.0]	[10.0]	[11.0]	03214-01-01					
40	2.835	2.283	2.047	1.102	1.496	.984	.591	.472	.512	83214-02-01					
40	[72.0]	[58.0]	[52.0]	[28.0]	[38.0]	[25.0]	[15.0]	[12.0]	[13.0]	03214-02-01					
50	3.150	2.756	2.362	1.260	1.831	1.063	.591	.472	.512	83214-03-01					
30	[80.0]	[70.0]	[60.0]	[32.0]	[46.5]	[27.0]	[15.0]	[12.0]	[13.0]	03214-03-01					

- 1) *KIT INCLUDES CYLINDER MOUNTING HARDWARE, PIVOT PIN AND PIVOT PIN RETAINER CLIPS.
- 3) REQUIRES -QFxx OPTION

TG1 SQ - F SQ

0

- 2) MP2 REAR FORK MOUNTING IS COMPATIBLE WITH MP4 MALE HINGE AND BMP4 PILLOW BLOCK.
- 4) DIMENSIONS: inch [mm]

REAR FORK MOUNTING FOR SPHERICAL BEARING KIT (PER VDMA 24562)

		LETTER DIMENSION/TOLERANCE													
SIZE	E MAX	B2/d12	B1/H14	TG1	B3 [±0.2 mm]	R2 MIN	f3	FL [±0.2 mm]	CN/F7	R1 MAX	KIT NO.*				
32	1.969	1.339	.551	1.280	.130	.669	1.811	.866	.394	.433	83215-01-01				
32	[50.0]	[34.0]	[14.0]	[32.5]	[3.3]	[17.0]	[46.0]	[22.0]	[10.0]	[11.0]	03213-01-01				
40	2.283	1.575	.630	1.496	.169	.787	2.087	.984	.472	.512	83215-02-01				
40	[58.0]	[40.0]	[16.0]	[38.0]	[4.3]	[20.0]	[53.0]	[25.0]	[12.0]	[13.0]	03213-02-01				
50	2.756	1.772	.827	1.831	.169	.866	2.283	1.063	.630	.709	83215-03-01				
30	[70.0]	[45.0]	[21.0]	[46.5]	[4.3]	[22.0]	[58.0]	[27.0]	[16.0]	[18.0]	03213-03-01				

- 1) *KIT INCLUDES CYLINDER MOUNTING HARDWARE AND PIVOT PIN. 2) MSB2 REAR FORK IS COMPATIBLE WITH BSB1 PILLOW BLOCK, MSB1 REAR MALE HINGE WITH SPHERICAL BEARING AND ROD EYE.
- 3) REQUIRES -QFxx OPTION 4) DIMENSIONS: inch [mm]

REAR MALE HINGE MOUNTING FOR SPHERICAL BEARING KIT

				LETTE	R DIMENSI	ON/TOLER	ANCE			
SIZE	TG1	FL [±0.2 mm]	D/H7	EN	ER MAX	L MAX	Z	Н	R	KIT NO.*
32	1.280	.866	.394	.551	.630	1.969	4°	_		83216-01-01
32	[32.5]	[22.0]	[10.0]	[14.0]	[16.0]	[50.0]	4	_	_	03210-01-01
40	1.496	.984	.472	.630	.748	2.283	4°	_		83216-02-01
40	[38.0]	[25.0]	[12.0]	[16.0]	[19.0]	[58.0]	4	_	_	03210-02-01
50	1.831	1.063	.630	.827	.827	2.756	4°	2.008	.748	83216-03-01
30	[46.5]	[27.0]	[16.0]	[21.0]	[21.0]	[70.0]	4	[51.0]	[19.0]	03210-03-01

NOTES:

1) *KIT INCLUDES CYLINDER MOUNTING HARDWARE.

- 3) REQUIRES -QFxx OPTION
- 2) MSB1 REAR MALE IS COMPATIBLE WITH MSB2 REAR FORK FOR SPHERICAL BEARING. 4) DIMENSIONS: inch [mm]

PILLOW BLOCK MOUNTING SPHERICAL BEARING KIT (PER VDMA 24562)

							LETTE	R DIMEN	ISION/T	OLERAN	ICE					
SIZE	CN/ H7	K1/ JS14	K2 MAX	G1/ JS14	f5 MAX	G2/ JS14	EN	G3 MAX	CH/ JS15	Н6	ER MAX	FL	Z	FASTENER	KIT NO.*	
32	.394	1.496	2.008	.827	.063	.709	.551	1.220	1.260	.394	.630	.866	4°	M6	62822-001-00	
02	[10.0]	[38.0]	[51.0]	[21.0]	[1.6]	[18.0]	[14.0]	[31.0]	[32.0]	[10.0]	[16.0]	[22.0]	7	IVIO	02022 001 00	
40	.472	1.614	2.126	.945	.063	.866	.630	1.378	1.417	.394	.709	.984	4°	M6	62822-002-00	
40	[12.0]	[41.0]	[54.0]	[24.0]	[1.6]	[22.0]	[16.0]	[35.0]	[36.0]	[10.0]	[18.0]	[25.0]	7	IVIO	02022-002-00	
50	.630	1.969	2.559	1.299	.063	1.181	.827	1.772	1.772	.472	.827	1.063	4°	M8	62822-003-00	
50	[16.0]	[50.0]	[65.0]	[33.0]	[1.6]	[30.0]	[21.0]	[45.0]	[45.0]	[12.0]	21.0	[27.0]	4	IVIO	02022-003-00	

NOTES:

- 1) *KIT INCLUDES PILLOW BLOCK ONLY.
- 2) BSB1 PILLOW BLOCK IS COMPATIBLE WITH MSB2 REAR FORK FOR SPHERICAL BEARING.
- 3) REQUIRES -QFxx OPTION

- 4) DIMENSIONS: inch [mm]
- 5) MOUNTING IS FUNCTIONAL IN INDICATED ORIENTATION ONLY.

SELF-ALIGNING PISTON ROD COUPLERS - METRIC (NOT FOR USE WITH SERIES ECVR)

BENEFITS

- Rod Couplers eliminate expensive precision machining for mounting fixed or rigid cylinder on guide or slide applications.
- Cylinder efficiency is increased by eliminating friction caused by misalignment. Couplers compensate for 2° angular error and 1/32" [0.8 mm] lateral misalignment on push and pull travel.
- Couplers provide greater reliability and reduce cylinder and component wear, simplifying alignment problems in the field.
- Rod Couplers are manufactured from high tensile and hardened steel components.

Metric rod couplers are an ideal accessory for use with Series ECVA Cylinders.

	LETTER DIMENSION/TOLERANCE													
SIZE	Α	B MIN	C MIN	D MIN	E	F	G	PART NO.	CORROSION RESISTANT					
32	M10 v 1 05	1.00	.625	1.875	.50	.875	.197	83275-03	51842-03					
32	M10 x 1.25	[25.4]	[15.9]	[47.6]	[12.7]	[22.2]	[5.0]	03273-03	51042-05					
40	M12 v 1 25	1.13	.650	2.187	.50	1.0	.236	00075.04	51842-04					
40	M12 x 1.25	[28.6]	[16.5]	[55.5]	[12.7]	[25.4]	[6.0]	83275-04	51842-04					
E0.	M16 v 1 5	1.75	1.125	3.312	.812	1.562	21/1		E1940 0E					
50	M16 x 1.5	[44.5]	[28.5]	[84.1]	[20.6]	[39.7]	12 1 832/5-05		51842-05					

 $\textbf{NOTE:} \ \mathsf{DIMENSIONS:} \ \mathsf{inch} \ [\mathsf{mm}]$

ROD CLEVIS MOUNTING KIT FOR METRIC ROD ENDS (PER DIN 8140)

	LETTER DIMENSION/TOLERANCE														
SIZE	AV MIN	CE	CK/H9	CL Max	CM MIN	ER Max	KK	L	LE MIN	KIT NO.*					
20	.787	1.575	.394	.787	.394	.630	M10 x 1.25	.984	.787	83221-01-01					
32	[20.0]	[40.0]	[10.0]	[20.0]	[10.0]	[16.0]	WITU X 1.25	[25.0]	[20.0]	03221-01-01					
40	.866	1.890	.472	.945	.472	.748	M12 x 1.25	1.181	.945	83221-02-01					
40	[22.0]	[48.0]	[12.0]	[24.0]	[12.0]	[19.0]	W112 X 1.25	[30.0]	[24.0]	03221-02-01					
50	1.102	2.520	.630	1.260	.630	.984	Macyae	1.535	1.260	00001 00 01					
50	[28.0]	[64.0]	[16.0]	[32.0]	[16.0]	[25.0]	M16 x 1.5	[39.0]	[32.0]	83221-03-01					

1) *KIT INCLUDES CLEVIS, PIVOT PIN, AND RETAINER RINGS.
2) DIMENSIONS: inch [mm]

ROD CLEVIS PIVOT PIN KIT

SIZE	d	L	L1	KIT NO.
32	.394	.984	.791	63463-01-2
02	[10.0]	[25.0]	[20.1]	03403-01-2
40	.472	1.181	.949	63463-02-2
40	[12.0]	[30.0]	[24.1]	03403-02-2
50	.630	1.535	1.264	63463-03-2
50	[16.0]	[39.0]	[32.1]	03403-03-2

NOTE: DIMENSIONS: inch [mm]

ROD EYE MOUNTING WITH SPHERICAL BEARING KIT

				LETTE	R DIMENSI	ON/TOLERA	NCE		
SIZE	AX MIN	CE	CN/H9	EN/h12	ER MAX	KK	LE MIN	Z	KIT NO.
32	.787	1.693	.394	.551	.551	M10 x 1.25	.591	4°	83220-01-01
02	[20.0]	[43.0]	[10.0]	[14.0]	[14.0]	W110 X 1.20	[15.0]	7	00220 01 01
40	.866	1.969	.472	.630	.630	M12 x 1.25	.669	4°	83220-02-01
40	[22.0]	[50.0]	[12.0]	[16.0]	[16.0]	WI12 X 1.23	[17.0]	4	03220-02-01
50	1.102	2.520	.630	.827	.827	M16 x 1.5	.906	4°	83220-03-01
50	[28.0]	[64.0]	[16.0]	[21.0]	[21.0]	W10 X 1.5	[23.0]	4	03220-03-01

NOTES:

- 1) KIT COMPATIBLE WITH MSB2 REAR FORK FOR SPHERICAL BEARING.
- 2) DIMENSIONS: inch [mm]

PIVOT PIN KIT

RETAINER CLIPS INCLUDED IN KIT AND SHIPPED UNASSEMBLED. RETAINER CLIP SHOWN MAY NOT BE STYLE SUPPLIED.

MP2 PIVOT PIN

	LETTER DIMENSION/TOLERANCE								
SIZE	d2 MAX	EK/e8	EL	f2 MAX	KIT NO.				
32	.906	.394	1.811	.335	52490-01-2				
32	[23.0]	[10.0]	[46.0]	[8.5]	32490-01-2				
40	.984	.472	2.087	.335	52490-02-2				
40	[25.0]	[12.0]	[53.0]	[8.5]	32490-02-2				
EO	.984	.472	2.402	.335	52490-03-2				
50	[25.0]	[12.0]	[61.0]	[8.5]	52490-03-2				

MSB2 PIVOT PIN

M3D2 FIVOI FIN											
		LETTER DIMENSION/TOLERANCE									
SIZE	d2 MAX	2 MAX d4/H12 EK/h9 f1 f2 MAX f3 MAX f4 KIT NO.									
20	.906	.118	.394	1.280	.177	1.811	.551	52491-01-2			
32	[23.0]	[3.0]	[10.0]	[32.5]	[4.5]	[46.0]	[14.0]	32491-01-2			
40	.984	.157	.472	1.496	.236	2.087	.630	E0401 00 0			
40	[25.0]	[4.0]	[12.0]	[38.0]	[6.0]	[53.0]	[16.0]	52491-02-2			
FO	.984	.157	.630	1.693	.236	2.283	.787	E0401 00 0			
50	[25.0]	[4.0]	[16.0]	[43.0]	[6.0]	[58.0]	[20.0]	52491-03-2			

NOTE: DIMENSIONS: inch [mm]

6250 SOLID STATE SWITCHES

Series ECV comes standard with a magnet band for use with PHD miniature Reed and Solid State Switches listed below. These switches mount easily to the cylinder using any of the three "T" slots provided in the body.

SERIES 6250 SOLID STATE SWITCHES

PART NO.	DESCRIPTION	COLOR
62505-1-02	NPN (Sink) DC Solid State, 2 m cable	Brown
62506-1-02	PNP (Source) DC Solid State, 2 m cable	Tan
62515-1	NPN (Sink) DC Solid State, Quick Connect	Brown
62516-1	PNP (Source) DC Solid State, Quick Connect	Tan

SERIES 6250 REED SWITCHES

PART NO.	DESCRIPTION	COLOR
62507-1-02	AC/DC Reed, 2 m cable	Silver
62517-1	AC/DC Reed, Quick Connect	Silver

CORDSETS WITH QUICK CONNECT

PART NO.	DESCRIPTION
61397-02	2 meter/3 wire
61397-05	5 meter/3 wire

62515-1, 62516-1 & 62517-1 Connector Detail

SIZE	A*	В	C	D	E	F
32	1.969	.276	.295	.236	1.949	.374
	[50.0]	[7.0]	[7.5]	[6.0]	[49.5]	[9.5]
40	2.283	.197	.256	.236	2.205	.374
	[58.0]	[5.0]	[6.5]	[6.0]	[56.0]	[9.5]
50	2.756	.236	.276	.236	2.697	.374
50	[70.0]	[6.0]	[7.0]	[6.0]	[68.5]	[9.5]

NOTES:

- 1) *ISO/VDMA MAX SQUARE SIZE.
- 2) DIMENSIONS F & D APPLY TO SWITCHES 62515-1, 62517-1 & 62516-1 ONLY.
- 3) DIMENSIONS: inch [mm]

Major Benefits

- Electrically driven cantilever slide based on the proven PHD Series SK and SL Slide
- · Offered in long or short bodies for application flexibility
- Standard dowel pin holes with optional transitional and precision diameters
- · High thrust and speed capability
- Travel lengths up to 700 mm
- · Rigid construction with low backlash
- · Very high degree of repeatability
- · High precision ball screw assemblies with long service life
- IP50 ingress protection
- · Inline and foldback motor mounting flexibility
- Your Motor, Your Way for online configuration of motor mounting plates, with a database of electric motors from all major manufacturers
- Choice of options/accessories similar to pneumatic Series SK/SL Slides
- · Switch ready standard

Choice of Inline or Foldback Motor Mounting

Foldback available in 1:1 or 2:1 drive for tailored performance.

Applications

- Assembly
- Die cut
- · Dispensing/filling
- Diverting
- Drilling
- · Inspection/measurement
- Joining/fastening
- Labeling/marking
- Part loading, sorting, clamping, positioning

increased cylinder life

- Tool change
- Valve control

Industry/Process Uses

- Automotive
- Conveying
- Electronics
- Food/beverage
- Machine tool
- Medical

- Packaging
- Pharmaceutical
- Plastics
- · Robotic tooling
- Semiconductor
- Special machines

ORDERING DATA: SERIES ESK/ESL SLIDE

TO ORDER SPECIFY:

ENGINEERING DATA: SERIES ESK/ESL SLIDE

SPECIFICATIONS	SERIES ESK/ESL
REPEATABILITY ¹	±0.0004 in [±0.010 mm]
MAXIMUM BACKLASH ²	0.007 in [0.18 mm]
RATED LIFE	Refer to Life vs. Thrust Chart (next page)
FULL TRAVEL TOLERANCE ⁸	+0.138/-0.000 in [+3.5/-0.0 mm]
DUTY CYCLE	100%
OPERATING TEMPERATURE	40 - 150°F [4 - 65°C]
LUBRICATION INTERVAL ³	Horizontal: 100 million in [2500 km], Vertical: 60 million in [1500 km]

SPECIFICATIONS			SERIES ESK/ESL SIZE								
	SPECIFICATIO			4			5	6			
	MAXIMUM TRAVEL	LVEI ESK				17.72			[450]	21.65 [550]	
	-	ESL	[]	23.62	[600]	23.62	[600]	27.65	[700]		
53	DRIVE MECHANISM					Ball	Screw				
AN	SCREW DIAMETER		mm	1:	2	1	6	2	0		
MECHAN	SCREW CONFIGURATION			-RB005	-RB010	-RB010	-RB016	-RB010	-RB020		
Ī	SCREW LEAD		mm/rev	5	10	10	16	10	20		
	GUIDE SHAFT DIAMETER		mm	10	6	_	20	2	5		
	GUIDE SHAFT BEARING TYPE				1	Ball B	ushing	1	<u> </u>		
SPEED4	MAXIMUM SPEED		in/sec [mm sec]	19.6 [500]	39.3 [1000]	39.3 [1000]	63.0 [1600]	39.3 [1000]	78.7 [2000]		
	MAXIMUM RPM	M rev/min				60	000				
THRUST	MAXIMUM THRUST		lbf [N]	306 [1360]	153 [680]	546 [2430]	342 [1520]	991 [4410]	564 [2510]		
TH.	NOMINAL THRUST ⁶		lbf [N]	90 [400]	74 [330]	285 [1270]	219 [975]	413 [1835]	341 [1515]		
TORQUE	PERMISSIBLE DRIVE TORQUE	,	in-lb [Nm]	10.62	[1.20]	38.06	[4.30]	69.03	[7.80]		
TOR	NO-LOAD TORQUE		in-lb [Nm]	1.33	-	3.54	[0.40]	5.31	[0.60]		
	TOTAL @ ZERO STROKE (Wot)	ESK ESL	lb [kg]	7.83 9.26			[5.34] [6.38]	20.93 25.76			
높	TOTAL LENGTH ADDER (WLT)	LOL	lb/in [kg/mm]	0.41 [0			0.0105]	0.81 [
NEIGHT	MOVING @ ZERO	ESK		2.83		4.97 [2.25]		9.16			
>	STROKE (Wom)	ESL	lb [kg]	3.17		5.61 [2.54]		10.45 [4.74]			
	MOVING LENGTH ADDER (WLM)	lb/in [kg/mm]	0.216 [0.0039]	0.333 [0.0059]		0.544 [0.0097]		
	ACTUATOR @ ZERO STROKE (Jo)	lb-in² [kg-m²]	0.010 [3.	00 x 10 ⁻⁶]	0.051 [1	.50 x 10 ⁻⁵]	0.165 [4.	84 x 10 ⁻⁵]		
	LENGTH ADDER (JL)	lb-in	²/in [kg-m²/mm]	0.0009 [9	.85 x 10 ⁻⁹]	0.0025 [2	2.90 x 10 ⁻⁸]	0.0069 [7	.95 x 10 ⁻⁸]		
₹	MOVING WEIGHT		lb-in²/lb	9.63 x 10 ⁻⁴	3.85 x 10 ⁻³	3.85 x 10 ⁻³	9.86 x 10 ⁻³	3.85 x 10 ⁻³	1.54 x 10 ⁻²		
E	MOVING WEIGHT ADDER (J _M)		[kg-m²/kg]	[6.21 x 10 ⁻⁷]	[2.48 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[6.36 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[9.93 x 10 ⁻⁶]		
2	MOTOR	-QF11		0.048 [1.	40 x 10⁻⁵]	0.161 [4	.71 x 10⁻⁵]	0.159 [4.	65 x 10⁻⁵]		
	CONFIGURATION	-QF21	lb-in ² [kg-m ²]	0.094 [2.	75 x 10⁻⁵]	0.283 [8	.28 x 10⁻⁵]	0.654 [1.	91 x 10 ⁻⁴]		
	(J ₀)	-QL11		0.011 [3.	0.011 [3.14 x 10 ⁻⁶]		0.021 [6.11 x 10 ⁻⁶]		0.138 [4.04 x 10 ⁻⁵]		

- 1) UNIDIRECTIONAL AT MODERATE SPEEDS AND LOADS
- 2) AXIAL FREE PLAY WHEN DRIVE SHAFT LOCKED
- 3) REFER TO OPERATING INSTRUCTIONS FOR RE-LUBRICATION DETAILS
- 4) REFER TO SPEED VS. TRAVEL CHART ON NEXT PAGE
- 5) REFER TO LIFE VS. THRUST CHART ON NEXT PAGE
- 6) 100 MILLION INCHES [2500 km] LIFE
- 7) CORRESPONDS TO MAXIMUM THRUST
- 8) FOR HOMING AND INCREASED APPLICATION FLEXIBILITY, INCLUDE EXTRA TRAVEL WHEN NECESSARY.
- 9) ALL DIMENSIONS ARE FOR REFERENCE ONLY UNLESS SPECIFICALLY TOLERANCED.

REFER TO ONLINE SIZING SOFTWARE FOR ACTUAL VALUES. **WEIGHT AND INERTIAL CALCULATIONS:**

TOTAL WEIGHT = Wot + (WLT x TRAVEL) + MOTOR MOUNT WEIGHT [reference pages 30 and 31] TOTAL MOVING WEIGHT = Wom + (WLM x TRAVEL) + EXTERNAL PAYLOAD

 $\begin{array}{l} \textbf{FOR -Qx11:} \ \ \text{INERTIA} \ \ _{\text{Reflected}} = J_0 + (J_L \ x \ TRAVEL) + (J_M \ x \ TOTAL \ MOVING \ WEIGHT) + J_0 \\ \textbf{FOR -QF21:} \ \ \text{INERTIA} \ \ _{\text{Reflected}} = [J_0 + (J_L \ x \ TRAVEL) + (J_M \ x \ TOTAL \ MOVING \ WEIGHT)] \ / \ 4 + J_0 \\ \end{array}$

RBxxx **SCREW CONFIGURATION**

The ball screw drive system of the Series ESK/ESL is available in two lead choices. This provides flexibility when matching velocity and load requirements to the application. Refer to product specifications and sizing software for performance parameters.

E S K B 5 4 x 400 - RB010 - J3 - QL11 - Wxxxx

High lead for speed

Low lead for thrust

PERFORMANCE CHARTS: SERIES ESK/ESL SLIDE

This section contains information on the capabilities of the Series ESK/ESL. It is not intended to be a comprehensive selection guide. To make the selection process simple and quick, refer to PHD's sizing software. You may request application assistance from your distributor or PHD's Customer Service Department. Use the Application Data Fax Sheet at the back of this catalog for application sizing.

PERFORMANCE CHARTS: SERIES ESK SLIDE

The deflection figures given in these charts are based on the effect of external loads. Shaft straightness, and bearing alignment will affect the accuracy of the tool plate location. When the load is attached to the face of the tool plate, add the distance between load center of gravity and tool plate to the travel length and use the total as the travel length in the following charts.

ESKB54

ESKB55

ESKB56

PERFORMANCE CHARTS: SERIES ESL SLIDE

ESLB54

ESLB55

ESLB56

DIMENSIONS: SERIES ESK SLIDE

4X Z THREAD 2X Ø TT DOWEL HOLE-2X Ø UU DOWEL HOLE-

DOWEL HOLE TOLERANCES	STANDARD DOWEL TOLERANCE	6000'-/9000'+	[+.015/023]	+.0007/0008	[+.018/020]	+.0007/0008	[. 040 / 020]
DOWEL	Ø DOWEL HOLE	.2362	[9]	.3150	[8]	3937	[0]

4X GG THREAD

	ı _						
2	110 × 1 75 × 16 × 10	MIO X 1.23 X 10 IIIIII DF	M4 x 0.7 x 11 mm DP [62] [1] [8.5] [30] M8 [22.5] [9.5] [27.0] [45] M6 [4.00 [787] M6 x 1.0 x 15 mm DP [117] [20] M10 x 1.5 x 19 mm DP [117] [20]		M4 x 0.7 x 11 mm DP 2.874 0.59 2.92 1.378 M10 1.004 4.90 1.375 2.008 M8 x 1.25 x 16 mm DP 1.431 1.251		
٨	70 5 7 05	CZ.1 X 0IVI	1 1 1 1 1 1	C.I X UIIVI	140.475	01.1 × 2.110	
W X1	.630	[16]	787.	[20]	.984	[22]	
8	3.819	[97]	4.606	[117]	5.630	[143]	
Λ	00 mm 31 0 x 10 mm DD	MD X 1.0 X 13 IIIIII DF	00 24 0 245	IND X I.U X IO IIIIII DF	10 × 1 05 × 16 mm	70	
-	772	45]	772	45]	800	21] <u> </u>	
L M N O Q R S T U	062 1.	7.0] [062 1.	7.0]	375 2.	4.9]	
S	320 1.	8.1] [[2	374 1.	9.5] [5	490 1.	2.4][3	
~	998	[22] [. 988	22.5] [.004	25.5][1	
o]]]])] o _M	1 0 M		
0	.984	[52]	181	[30]	.378	[32]	
z	339	10.1]	.335	[8.5]	.292	[7.4]	
Σ	.039	Ξ	.039	Ξ	.059	[1.5]	
_	1.988	50.5]	2.441	[62]	2.874	[73]	
×	M4×0.7×11 mm DP 1.988 .039 .399 .984 M6		00 mm ++ 2 C O 2 MM	M4 X 0.7 X 1.1 IIIII DF	00 cm ++ 7 0 MA	M4 × 0.7 × 1.1 IIIII DP	
7	90 1.890	[48]	2.165		2.598		
Ŧ	1.890	[48]	2.362	[60]	2.756	[02]	
9	1.260	[32]	1.417	[36]	1.772	[42]	
ш	5.551	[141]	6.732	[171]	8.386	[213]	
ш	2.283	[28]	2.559	[65]	3.150	[80]	
Q	5.630	[143]	6.811	[173]	8.465	[215]	
C D E F	2.756	[70]	2.480	[63]	3.937	[100]	
8	3.937 1.870 2.756 5.630 2.283 5.551 1.260 1.890	[47.5]	4.528 2.283 2.480 6.811 2.559 6.732 1.417 2.362 2.165] [58] [63] [173] [65] [171] [36] [60] [55]	.906 2.559 3.937 8.465 3.150 8.386 1.772 2.756 2.598	[150] [65] [100] [215] [80] [213] [45] [70] [66]	
	937	[00]	.528	115]	906	150]	
SIZE A	ω.	느	4	_	147	ᆖ	

SIZE AA BB CC DD EF FF GG HH NN GD PP QG TT DD TT DD CD QD PD CD C	픙	.23	[6.0	.158	[4.0	.29	[7.5
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	쁭	197	[5.0]	158	[4.0]	. 295	[7.5]
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	QBA	1.178	[29.9]	1.374	[34.9]	1.912	[48.6]
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	占	.2362	[6.0]	3937	1[10.0]	4724	[12.0]
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	3	.984	[25.0]	1.102	[28.0]	1.364	[34.6]
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	QVA	.319	[8.1]	.319	[8.1]	.359	[9.1]
FF GG HH NN On PP QQ RR SS TT UU 276 M8 x 1.25 x 16 mm DP 610 0.709 2.953 2.52 4.488 0.709 Ø .2362 x .315 DP Ø .3150 x .315	ဗ	7.795	[198]	8.895	[226]	10.196	[259]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] 335 M10 x 1.5 x 20 mm DP [15.5] [8.5] M12 x 1.75 x 20 mm DP [18.6] 453 M12 x 1.75 x 20 mm DP [27]	₹	.984	[22]	1.220	[34]	1.437	[36.5]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] .335 M10 x 1.5 x 20 mm DP .728 [8.5] M10 x 1.5 x 20 mm DP [18.5] .453 M12 x 1.75 x 20 mm DP 1.063 [11.5] Comm DP 1.063	3	Ø .3150 x .315 DP	[Ø8×8mm DP]	Ø .3150 x .315 DP	[Ø8×8mm DP]	Ø .3937 x .394 DP	[Ø 10 x 10 mm DP]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] .335 M10 x 1.5 x 20 mm DP .728 [8.5] M10 x 1.5 x 20 mm DP [18.5] .453 M12 x 1.75 x 20 mm DP 1.063 [11.5] Comm DP 1.063	F	Ø .3150 x .315 DP	[Ø8×8mm DP]	Ø .3937 x .394 DP	[Ø 10 x 10 mm DP]	ı	
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] .335 M10 x 1.5 x 20 mm DP .728 [8.5] M10 x 1.5 x 20 mm DP [18.5] .453 M12 x 1.75 x 20 mm DP 1.063 [11.5] Comm DP 1.063	SS	Ø .2362 x .315 DP	[Ø6 x 8 mm DP]	Ø .3150 x .315 DP	[Ø8 x 8 mm DP]	Ø .3937 x .394 DP	[Ø 10 x 10 mm DP]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] 335 M10 x 1.5 x 20 mm DP [15.5] [8.5] M12 x 1.75 x 20 mm DP [18.6] 453 M12 x 1.75 x 20 mm DP [27]	Æ	0.709	[18.0]	0.886	[22.5]	ı	1
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] .335 M10 x 1.5 x 20 mm DP .728 [8.5] M10 x 1.5 x 20 mm DP [18.5] .453 M12 x 1.75 x 20 mm DP 1.063 [11.5] Comm DP 1.063	00	4.488	[114.0]	5.492	[139.5]	7.756	[197.0]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] 335 M10 x 1.5 x 20 mm DP [15.5] [8.5] M12 x 1.75 x 20 mm DP [18.6] 453 M12 x 1.75 x 20 mm DP [27]	문	2.520	[64.0]	2.953	[75.0]	3.543	[90.0]
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] 335 M10 x 1.5 x 20 mm DP [15.5] [8.5] M12 x 1.75 x 20 mm DP [18.6] 453 M12 x 1.75 x 20 mm DP [27]	00	2.953	[75.0]	3.543	[90.0]	ı	1
FF GG HH 276 M8 x 1.25 x 16 mm DP .610 [7] .335 M10 x 1.5 x 20 mm DP .728 [8.5] M10 x 1.5 x 20 mm DP [18.5] .453 M12 x 1.75 x 20 mm DP 1.063 [11.5] Comm DP 1.063	Z	0.709	[18.0]	0.797	[20.25]	1.496	[38:0]
FF GG 276 M8 x 1.25 x 16 mm DP [7] M10 x 1.5 x 20 mm DP [8.5] M10 x 1.5 x 20 mm DP 453 M12 x 1.75 x 20 mm DP [11.5] M12 x 1.75 x 20 mm DP	₹	.610	[15.5]	.728	[18.5]	0.	[27]
SIZE AA BB CC DD EE FF 4 1.240 2.283 1.417 M10 5.039 2.76 5 1.299 2.559 1.772 M12 [7] 6 1.752 2.559 1.999 M12 [154] [8.5] 6 1.772 2.559 1.969 M12 [174] [1.54] [8.5] 6 [44.5] [65] [50] M12 [197] [11.5] [11.5]	99	M8 × 1.05 × 16 mm DD	10 1 1 1 1 2 2 7 1 7 0 W	M10 x 1.5 x 20 mm DP		1110 × 1 75 × 20 mm DD	INI 2 X 20 IIII DE
SIZE AA BB CC DD EE 4 1.240 2.283 1.417 M10 5.039 5 131.5 158 136 172 6.063 6 1.299 2.559 1.772 M12 [144] 7 1.752 2.559 1.969 M12 [145] 6 1.776 2.559 1.969 M12 7.756 7 1.44.5 [65] [60] M12 7.756	世	.276		.335	[8.5]	.453	[11.5]
SIZE AA BB CC DD 4 1.240 2.283 1.417 M10 5 1.299 2.559 1.772 M12 6 1.752 2.559 1.969 M12 6 1.752 2.559 1.969 M12	Ш	5.039	[128]	6.063	[154]	7.756	[197]
SIZE AA BB CC 4 1.240 2.283 1.417 1.291 [31.5] [38] [36] 1.299 2.559 1.772 [45] 1.752 2.559 1.969 [45] 6 [44.5] [65] [65] [50]	00	M	2	M	7 1	243	7
SIZE AA BB 4 1.240 2.28: 1.29 2.55: 1.29 5 [33] [65] 6 1.752 2.556 6 [44.5] [65]	8	3 1.417	[36]	1.772	[45]	1.969 ا	[20]
SIZE AA 1.240 4 [31.5] 5 [33] 6 [44.5]	8	2.283	[28]	2.559	[65]	2.559	[65]
SIZE 4 4 6 6 6 6	AA	1.240	[31.5]	1.299	[33]	1.752	[44.5]
	SIZE	_	+	ц	.	ď	D

36 36 .0] .0] .0]

1) NUMBERS SHOWN IN \bigcirc INDICATE SLIDE POSITIONS. 2) DIMENSIONS: inch [mm]

U + TRAVEL

DIMENSIONS: SERIES ESL SLIDE

	c
	_
	_
	_
	_
	2
	2
	-
	2
	-
	-
	c
	L
[50]	L
+.018/020]	•
÷	د
	2
[10]	٠
_	1710
ically toler	an

	ii		ı			
Z	Mo v 1 75 v 16 mm D	NIO X 1.23 X 10 IIIII D.F	M40 × 4 E × 40 mm DD	MIU X 1.3 X 18 IIIII DE	76 00 4 76 00	1.13 × 2.1 × 2.1M
Y	30 + ^ o/V	CZ.1 X 0IVI	3 F ~ OFM	C.I X OI IVI	32 6 7 0 6 1 1	C1.1 X Z1 IVI
W X1	.630	[16]	787.	[20]	.984	[25]
>	3.819	[6]	4.606	[117]	5.630	[143]
V	Me v 1 0 v 15 mm DB	MO X 1.0 X 13 IIIIII DF	Me v 1 0 v 15 mm DD	MO X I.U X I.D IIIIII DE	MO ~ 1 OF ~ 10 P	Mo X 1.23 X 10 IIIIII DF
_	1.772	[45]	1.772	[45]	2.008	[51]
-	1.062	[27.0]	1.062	[27.0]	1.375	34.9]
S	.320	[8.1]	.374	[9.5]	.490	12.4]
æ	998.	[22]	988.	22.5]	1.004	25.5]
o	SM	O N	01/10	 o _M		<u></u>
L M N O P Q R S T U	1.417	[36]	1.594	40.5]	2.165	[22]
0	.984	[52]	1.181	[30]	1.378	[32]
z	399	10.1]	.335	[8.5]	. 292	[7.4]
Σ	039	Ξ	.039	Ξ	.059	[7.5]
_	1.988	[50.5]	2.441	[62]	2.874	[73]
К		We + 20.7 × 11 11111 DT [60.5] [1] [10.1] [25] [36] WO [22] [8.1] [27.0] [45] WO × 1.50 × 10 11111 DT [97] [16] WO × 1.50 × 10 11111 DT		M4 × 0.7 × 11 IIIII DT [62] [1] [8.5] [30] [40.5] [40.5] [9.5] [27.0] [45] MO × 1.3 × 13 IIIII DT [117] [20] MI U × 1.3 × 13 IIIII DT	2.874 .059 .292 1.378 2.165 AAA 1.004 .490 1.375 2.008 AAA 2.202 A	M4 × 0.7 × 11 IIIII DP
_	3.346	[82]	3.740	[92]	4.567	[116]
Ŧ	1.890	[48]	2.362	[60]	2.756	[70]
G	1.260	[32]	1.417	[36]	1.772	[45]
F	5.551	[141]	6.732	[171]	8.386	[213]
E	2.283	[28]	2.559	[65]	3.150	[80]
D	5.630	[143]	6.811	[173]	8.465	[215]
ZE A B C D E F G H	5.118 1.870 3.780 5.630 2.283 5.551 1.260 1.890 3.346	[130] [47.5] [96] [143] [58] [141] [32] [48]	5.709 2.283 4.134 6.811 2.559 6.732 1.417 2.362 3.740	[145] [58] [105] [173] [65] [171] [36] [60]	7.874 2.559 5.906 8.465 3.150 8.386 1.772 2.756 4.567	[200] [65] [150] [215] [80] [213] [45] [70] [116]
8	1.870	[47.5]	2.283	[28]	2.559	[65]
A	5.118	[130]	5.709	[145]	7.874	[200]
ZE						_

2 9

JJ QC QVA QJ QL QBA QE QH	.236	[0.0]	.158	[4.0]	.295	[7.5]
끙	.197	[2.0]	.158	[4.0]	.295	[7.5]
QBA	1.178	[29.9]	1.374	[34.9]	1.912	[48.6]
占	.2362	[6.0]	2868.	[10.0]	.4724	[12.0]
3	.984	[25.0]	1.102	[28.0]	1.364	[34.6]
QVA	319	[8.1]	.319	[8.1]	.359	[9.1]
00	9.251	[235]	10.470	[596]	12.168	[309]
3	.984	[52]	1.220	[31]	1.437	[36.5]
3	0.709 2.953 2.520 4.488 0.709 Ø.2362 x.315 DP Ø.3150 x.315 DP	$ \lceil (18.0) \rceil \lceil (75.0) \rceil \lceil (64.0) \rceil \lceil (114.0) \rceil \lceil (18.0) \rceil \lceil (26.8 \text{ mm DP}) \rceil \rceil \lceil (28.8 \text{ mm DP}) \rceil \rceil \lceil (28.8 \text{ mm DP}) \rceil \rceil \lceil (25) \rceil \lceil (25) \rceil \rangle $	$0.797 3.543 2.953 5.492 0.886 \cancel{0}.3150 \\ \times .315 \cancel{0}.315 \cancel{0}.3150 \\ \times .315 \cancel{0}.3150 \\ \times .315 \cancel{0}.3150 \\ \times .3150 $	[20.25] [90.0] [75.0] [139.5] [22.5] [68 × 8 mm DP] [60.0 × 10 mm DP] [68 × 8 mm DP] [31] [266] [8.1] [28.0][10.0] [13.0] [4.0] [4.0]	Ø.3937 x .394 DP 1.437 12.168 .359 1.364 4724 1.912 .295 .295	[Ø 10 × 10 mm DP] [36.5] [309] [9.1] [34.6] [12.0] [48.6] [7.5] [7.5]
Þ	Ø .3150 x .315 DP	[Ø 8 x 8 mm DP]	Ø .3937 x .394 DP	[Ø 10 x 10 mm DP]	-	ı
SS	Ø .2362 x .315 DP	[Ø 6 x 8 mm DP]	Ø .3150 x .315 DP	[Ø 8 x 8 mm DP]	- Ø .3937 x .394 DP	[38.0] $ $ [90.0] [197.0] $ $ [\emptyset 10 x 10 mm DP]
Æ	0.709	[18.0]	0.886	[22.5]	1	ı
00	4.488	[114.0]	5.492	[139.5]	- 3.543 7.756	[197.0]
윤	2.520	[64.0]	2.953	[12.0]	3.543	[90.0]
00	2.953	[75.0]	3.543	[90.0]	ı	ı
NN 00 PP QQ RR	0.709	[18.0]	0.797	[20.25]	1.496	[38.0]
₹	.610	[15.5]	.728	[18.5]	-	[27]
99	0.0 × 1.05 × 10 × 0.00	100 X 1.23 X 10 11111 UF	00 × 3 + × 011	MINU X 1.3 X 20 IIIII DF	M10 × 175 × 20 mm DB	N112 X 1.73 X 20 IIIIII DF
出	9/	7	335	8.5]	453	1.5]
	Ŋ	_		_	٠.	드
Ш	5.039 .2	[128]	6.063	[154]	7.756	[197]
00	2. 5.039 .2		6:063		7.756	"" [197] [1
33 QQ 23	1.417 A44 5.039 .2	[36] [128]	1.772	[45] ^{WHZ} [154] [1.969 7.756	[50] ^{W112} [197] [1
BB CC DD EE	2.283 1.417 0.44 5.039 .2	[58] [36] ^{MHO} [128] [2.559 1.772	[65] [45] ^{WH2} [154] [2.559 1.969 41.969 7.756	[65] [50] ^{W14} [197] [1
SIZE AA BB CC DD EE FF	1.240 2.283 1.417 4.40 5.039 .2	[31.5] [58] [36] [11.5] [128] [7] 11.53 × 10 11111 DF	1.299 2.559 1.772 4.45 6.063	[33] [65] [45] ^{MILZ} [154] [8.5] MID X 1.3 X 20 IIIIII DF	1.752 2.559 1.969 41.969 7.756	[44.5] [65] [50] WILZ [197] [11.5] WILZ X 1.73 X 20 IIIIII DF

NOTES: 1) NUMBERS SHOWN IN \bigcirc INDICATE SLIDE POSITIONS. 2) DIMENSIONS: inch [mm]

[6]

[8]

DOWEL HOLE TOLERANCES

Ø DOWEL HOLE

STANDARD DOWEL TOLERANCE +.0006/-.0009 [+.015/-.023]

+.0007/-.0008 [+.018/-.020] +.0007/-.0008

QF11 FOLDBACK MOTOR MOUNTING WITH 1:1 DRIVE RATIO

QF21 FOLDBACK MOTOR MOUNTING WITH 2:1 DRIVE RATIO

Foldback motor mounting with the QF11 option provides a 1:1 drive ratio allowing similar performance to the inline motor mounting in a shorter overall length. The QF21 option provides a 2:1 drive ratio reduction for applications that require higher thrust. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

E S K B 5 4 x 400 - RB010 - QF21 - Wxxxx

																			MC	JUNIIN	li	
SIZE	QC (ESKBxx)	QC (ESLBxx)	(JJ)	QH	MMD MIN	MMD MAX	MME	MMF	MMG	MMH 1:1	MMH 2:1	MMJ 1:1	MMJ 2:1	MMK	MML (ESKBxx)	MML (ESLBxx)	WEIGHT lb [kg]	MMD Blank	MMU 1:1	MMU 2:1	MMV 1:1	MMV 2:1
4	7.795	9.251	.984	.236	.374	1.241	.374	2.185	2.480	3.838	3.760	2.854	2.776	5.078	9.980	11.436	2.25	.533	.236	.236	1.330	.892
4	[198]	[235]	[25]	[6.0]	[9.5]	[31.5]	[9.5]	[55.5]	[63.0]	[97.5]	[95.5]	[72.5]	[70.5]	[129.0]	[253.5]	[290.5]	[1.02]	[13.5]	[6.0]	[6.0]	[33.8]	[22.7]
-	8.895	10.470	1.220	.158	.374	.886	.374	2.539	3.150	4.570	4.250	3.350	3.303	6.145	11.434	13.009	3.74	.591	.315	.236	1.644	1.080
3	[226]	[266]	[31]	[4.0]	[9.5]	[22.5]	[9.5]	[64.5]	[80.0]	[116.1]	[108]	[85.1]	[83.9]	[156.1]	[290.4]	[330.4]	[1.70]	[15.0]	[8.0]	[6.0]	[41.8]	[27.4]
6	10.196	12.168	1.437	.295	.374	.886	.374	2.677	3.386	5.472	5.823	4.035	4.386	7.516	12.873	14.845	5.22	.591	.315	.236	1.644	1.330
O	[259]	[309]	[36.5]	[7.5]	[9.5]	[22.5]	[9.5]	[68]	[86.0]	[139.0]	[148]	[102.5]	[111.4]	[190.9]	[327]	[377]	[2.37]	[15.0]	[8.0]	[6.0]	[41.8]	[33.8]

NOTES

- 1) YOUR MOTOR, YOUR WAY MOTOR MOUNT -QFXX IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO SLIDE.
- 2) KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE SLIDE BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- 3) WHEN (-W0000) IS SPECIFIED, PULLEY ID IS SUPPLIED WITH UNFINISHED ID Ø MMU AND MOTOR MOUNTING PLATE IS SUPPLIED WITHOUT MOTOR MOUNTING FEATURES.

QL11 INLINE MOTOR MOUNTING WITH 1:1 DRIVE RATIO

Inline motor mounting with the QL11 option provides a 1:1 drive ratio with the lowest overall unit weight and height for high speed applications. The simple, low inertia design of the inline motor mounting allows for a cost effective solution with minimal assembly time. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

-W0000 BLANK MOTOR MOUNTING

SIZE	QC	QC (ESLBxx)		(11)	QE	мма	ММВ	ММВ	MIN	IC	WEIGHT Ib	MMB	MMT	MMT MAX SHAFT
SIZE	(ESKBxx)		(11)	QL.	IVIIVIA	MAX	MIN	STANDARD	OVERSIZE	[kg]	BLANK	MIN	ALLOWED	
4	7.795	9.251	.984	.197	1.949	1.000	.335	2.362	2.756	1.00	.842	.157	.472	
4	[198]	[235]	[25]	[5.0]	[49.5]	[25.4]	[8.5]	[60.0]	[70.0]	[0.45]	[21.4]	[4.0]	[12.0]	
_	8.895	10.470	1.220	.158	2.087	1.400	.335	2.756	3.465	1.44	.890	.197	.630	
5	[226]	[266]	[31]	[4.0]	[53.0]	[35.6]	[8.5]	[70.0]	[88.0]	[0.65]	[22.6]	[5.0]	[16.0]	
6	10.196	12.168	1.437	.295	3.234	1.400	.335	3.465	4.331	3.00	1.181	.236	.945	
O	[259]	[309]	[36.5]	[7.5]	[82.1]	[35.6]	[8.5]	[88.0]	[110.0]	[1.36]	[30.0]	[6.0]	[24.0]	

NOTES:

- 1) YOUR MOTOR, YOUR WAY MOTOR MOUNT -QL11 IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO SLIDE.
- 2) KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE A SLIDE BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- 3) WHEN (-W0000) IS SPECIFIED, COUPLER ID IS SUPPLIED WITH UNFINISHED ID Ø MMT AND MOTOR MOUNTING PLATE IS SUPPLIED AT MMC "OVERSIZE" AND WITHOUT MOTOR MOUNTING FEATURES.
- 4) REFER TO CAD MODEL FOR ACTUAL DIMENSIONS.
- 5) DIMENSIONS: inch [mm]

phdplus.phdinc.com

WXXXX MOTOR CODE

Your Motor, Your Way customizable motor mounting is generated by PHD's extensive motor database at www.config.phdinc. com. The user may select their compatible motor of choice from the pre-populated motor database. In the event the chosen motor is not in the database, they may enter necessary motor features to generate the PHD motor code.

The tailored motor mounting components are included with the specified driver and shipped in kit form. See page 12.

E S K B 5 4 × 400 - RB010 - QL11 - Wxxxx

CORROSION RESISTANT GUIDE SHAFTS

Extremely hard corrosion-resistant coating on the guide shafts for use in applications where moisture may corrode untreated hardened and ground shafts. End faces of the shafts remain uncoated. Consult PHD for fully coated shafts.

E S K B 5 4 x 400 - RB010 - Q1 - QL11 - Wxxxx

SHOCK PADS ON EXTENSION AND RETRACTION

This option provides urethane shock pads on retraction and extension for crash protection, eliminating metal-to-metal contact as the tool plate or stop collars reach the slide body. This option is not intended for travel adjustment.

The G30 option also includes one collar that allows the addition of a proximity switch target. This option is required when proximity switches are desired on extend.

[47.5] [48.0] NOTE: DIMENSIONS: inch [mm]

1.870

1.890

.591

[15.0]

1.772

[45.0]

4

5

J3 TRANSITION FIT DOWEL HOLES

This option provides a compromise fit between clearance and interference. Transitional fits are used where accuracy of location is important, but a small amount of clearance or interference is permissible.

E S K B 5 4 x 400 - RB010 - J3 - QL11 - Wxxxx

J8 PRECISION FIT DOWEL HOLES

This option provides an H7 tolerance precision fit with dowel pins. Precision fits are used where accuracy of location is of prime importance, and for parts requiring rigidity and alignment.

	SIZE	R	NN	00	PP	QQ	RR	SS	ΤΤ	UU
Ī	4	.866	0.709	2.953	2.520	4.488	0.709	Ø .2362 x .315 DP	Ø .3150 x .315 DP	Ø .3150 x .315 DP
	4	[22]	[18.0]	[75.0]	[64.0]	[114.0]	[18.0]	[Ø6x8mm DP]	[Ø8x8mm DP]	[Ø8x8mm DP]
ĺ	5	.886	0.797	3.543	2.953	5.492	0.886	Ø .3150 x .315 DP	Ø .3937 x .394 DP	Ø .3150 x .315 DP
	5	[22.5]	[20.25]	[90.0]	[75.0]	[139.5]	[22.5]	[Ø8x8mm DP]	[Ø 10 x 10 mm DP]	[Ø8x8mm DP]
	6	1.004	1.496	-	3.543	7.756	-	Ø .3937 x .394 DP	_	Ø .3937 x .394 DP
	U	[25.5]	[38.0]	_	[90.0]	[197.0]	-	[Ø 10 x 10 mm DP]	_	[Ø 10 x 10 mm DP]

Ø DOWEL	J3 OPTION	J8 OPTION
HOLE	TOLERANCE	TOLERANCE
.2362	+.0015/0004	+.0005/0000
[6]	[+.038/011]	[+.012/000]
.3150	+.0016/0006	+.0006/0000
[8]	[+.041/016]	[+.015/000]
.3937	+.0016/0006	+.0006/0000
[10]	[+.041/016]	[+.015/000]

NOTE: DIMENSIONS: inch [mm]

CYLINDER REPLACEMENT ONLY (WITHOUT SLIDE)

This option provides complete ECVA Cylinder replacement and motor mounting is included/excluded based on ordering specifications. If motor mounting is desired, a full unit description is required.

E S K B 5 4 x 400 - RB010 - H4 - QL11 - Wxxxx

SLIDE REPLACEMENT ONLY (WITHOUT CYLINDER)

NOTE: DIMENSIONS: inch [mm]

This option provides the slide mechanism only without cylinder or motor mounting. Included with option -H11 is all the hardware required for mounting standard PHD Series ECVA Cylinders or pneumatic standard VDMA/ISO cylinders to the slide. A selfaligning rod coupling is also provided, making it easy to attach the appropriate VDMA/ISO cylinder. (No extra rod extension required.)

E S K B 5 4 x 400 - RB010 - H11 - QL11 - Wxxxx

ACCESSORIES: SERIES ESK/ESL SLIDE

PROXIMITY SWITCH BRACKET & TARGET KITS

Each kit contains a bracket, target, and hardware for mounting one 8 mm or 12 mm threaded proximity switch on an ESK or ESL Slide. Switches must be ordered separately.

GI.	7E	STANDAF	RD PLATING	CORROSION RESISTANT			
SIZE		8 mm	12 mm	8 mm	12 mm		
4	ļ	56848-02	65561-03-1	58243-02	65561-03-2		
5	5	56848-03	65561-03-1	58243-03	65561-03-2		
6	3	56848-04	65561-04-1	58243-04	65561-04-2		

8 mm PROXIMITY SWITCH MOUNTING

SIZE	PA	РВ	PC	PD	PE
1	1.004	.630	1.654	.374	.374
4	[25.5]	[16.0]	[42.0]	[9.5]	[9.5]
5	1.004	.630	1.654	.374	.374
5	[25.5]	[16.0]	[42.0]	[9.5]	[9.5]
6	1.083	.650	2.008	.374	.374
U	[27.5]	[16.5]	[51.0]	[9.5]	[9.5]

NOTE: DIMENSIONS: inch [mm]

12 mm PROXIMITY SWITCH MOUNTING

SIZE	PA	РВ	PC	PD	PE
4	1.000	.886	1.496	.500	.374
4	[25.4]	[22.5]	[38.0]	[12.7]	[9.5]
5	1.000	.886	1.496	.500	.374
3	[25.4]	[22.5]	[38.0]	[12.7]	[9.5]
6	1.126	.886	2.008	.500	.374
0	[28.6]	[22.5]	[51.0]	[12.7]	[9.5]

NOTE: DIMENSIONS: inch [mm]

INDUCTIVE PROXIMITY SWITCHES

Two models of inductive proximity switches are available for use with PHD Series ESK and ESL Slides (-G30 option required on extend).

PART NO.	DESCRIPTION
51422-005-02	8 mm Inductive Proximity Switch, NPN with 2 meter Cable
51422-006-02	8 mm Inductive Proximity Switch, PNP with 2 meter Cable
15561-001	12 mm Inductive Proximity Switch, NPN with 3 meter Cable
15561-002	12 mm Inductive Proximity Switch, PNP with 3 meter Cable
15561-003	12 mm Inductive Proximity Switch, AC 35-250 with 3 meter Cable

ACCESSORIES: SERIES ESK/ESL SLIDE

6250 SOLID STATE SWITCHES

Cylinder comes standard with a magnet band for use with PHD miniature Reed and Solid State Switches listed below. These switches mount easily to the cylinder using any of the three "T" slots provided in the body.

SERIES 6250 SOLID STATE SWITCHES

PART NO.	DESCRIPTION	COLOR
62505-1-02	NPN (Sink) DC Solid State, 2 m cable	Brown
62506-1-02	PNP (Source) DC Solid State, 2 m cable	Tan
62515-1	NPN (Sink) DC Solid State, Quick Connect	Brown
62516-1	PNP (Source) DC Solid State, Quick Connect	Tan

POSITION 3 SHOWN

SERIES 6250 REED SWITCHES

PART NO.	DESCRIPTION	COLOR
62507-1-02	AC/DC Reed, 2 m cable	Silver
62517-1	AC/DC Reed, Quick Connect	Silver

CORDSETS WITH QUICK CONNECT

SIZE SA SB SC SD .25 .36 1.24 [9.1] [31.5] [6.4].51 1.40 .05 .18 5 [13.0][1.3][35.6] [4.6] .73 .25 1.59 .16 6 [18.5] [6.4][40.4] [4.1]

NOTE: DIMENSIONS: inch [mm]

Major Benefits

- Electrically driven gantry slide based on the proven PHD Series SG Slide
- · Long travel, high load
- · Standard travel up to 900 mm
- · High thrust and speed capability
- · Rigid construction
- · Very high degree of repeatability
- · High precision ball screw assemblies with long service life
- IP50 ingress protection
- · Inline and foldback motor mounting flexibility
- Your Motor, Your Way for online configuration of motor mounting plates, with a database of electric motors from all major manufacturers
- Choice of options/accessories similar to pneumatic Series SG Slides
- · Switch ready standard

Foldback available in 1:1 or 2:1 drive for tailored performance.

Applications

- Assembly
- Die cut
- Dispensing/filling
- Diverting
- Drilling
- · Inspection/measurement
- Joining/fastening
- Labeling/marking
- Part loading, sorting, clamping, positioning
- Tool change
- Valve control

Industry/Process Uses

- Automotive
- Conveying
- Electronics
- Food/beverage
- Machine tool
- Medical

- Packaging
- Pharmaceutical
- Plastics
- Robotic tooling
- Semiconductor
- Special machines

ORDERING DATA: SERIES ESG SLIDE

TO ORDER SPECIFY:

ENGINEERING DATA: SERIES ESG SLIDE

SPECIFICATIONS	SERIES ESG
REPEATABILITY ¹	±0.0004 in [±0.010 mm]
MAXIMUM BACKLASH ²	0.007 in [0.18 mm]
RATED LIFE	Refer to Life vs. Thrust Chart
FULL TRAVEL TOLERANCE ⁸	+0.138/-0.000 in [+3.5/-0.0 mm]
DUTY CYCLE	100%
OPERATING TEMPERATURE	40 - 150°F [4 - 65°C]
LUBRICATION INTERVAL ³	Horizontal: 100 million in [2500 km], Vertical: 60 million in [1500 km]

	ODECIEI	CATIONS		SERIES ESG SIZE						
	OFEGIFI	CATIONS		4			5 [600]	6		
	MAXIMUM TRAVEL		in [mm]	19.69	[500]	35.43 [900]				
S	DRIVE MECHANISM			Ball Screw						
\geq	SCREW DIAMETER	12	2	1	6	16				
Ϋ́	SCREW CONFIGURATION			-RB005	-RB010	-RB010	-RB016	-RB010	-RB016	
MECHANICS	SCREW LEAD		mm/rev	5	10	10	16	10	16	
_	GUIDE SHAFT DIAMETER		mm	1(6	2	.0	2	5	
	GUIDE SHAFT BEARING T	TYPE				Ball B	ushing			
SPEED⁴	MAXIMUM SPEED		in/sec [mm/sec]	19.6 [500]	39.3 [1000]	39.3 [1000]	63.0 [1600]	39.3 [1000]	63.0 [1600]	
SPE	MAXIMUM RPM	MAXIMUM RPM rev/min				60	00			
THRUST	MAXIMUM THRUST		lbf [N]	306 [1360]	153 [680]	546 [2430]	342 [1520]	546 [2430]	342 [1520]	
置	NOMINAL THRUST ⁶		lbf [N]	90 [400]	74 [330]	285 [1270]	219 [975]	285 [1270]	219 [975]	
TORQUE	FERMISSIBLE DRIVE TORQUE		in-lb [Nm]	10.62 [1.20]		38.06 [4.30]		38.06 [4.30]		
T0R	NO-LOAD TORQUE		in-lb [Nm]	1.33 [[0.15]	3.54	[0.40]	5.31	[0.60]	
	TOTAL @ ZERO STROKE (lb [kg]	13.7 [18.87	[8.56]	24.67		
눞	TOTAL LENGTH ADDER (\	Wlt)	lb/in [kg/mm]	0.57 [0.010]		0.74	0.132]	0.92 [0.0169]		
WEIGHT	MOVING @ ZERO STROK	Е (Wом)	lb [kg]	5.41 [2.45]		8.47	[3.84]	10.67	[4.89]	
	MOVING LENGTH ADDER	(WLM)	lb/in [kg/mm]	0.038 [0	0.0006]	0.058	[0.0010]	0.058 [(0.0010]	
	ACTUATOR @ ZERO STRO	OKE (Jo)	lb-in ² [kg-m ²]	0.010 [3.0	00 x 10 ⁻⁶]	0.051 [1	.50 x 10 ⁻⁵]	0.051 [1.	50 x 10 ⁻⁵]	
	LENGTH ADDER (JL)	lb	-in²/in [kg-m²/mm]	0.0009 [9.	.85 x 10 ⁻⁹]	0.0025 [2	2.90 x 10 ⁻⁸]	0.0025 [2	.90 x 10 ⁻⁸]	
≝	MOVING WEIGHT		lb-in²/lb	9.63 x 10 ⁻⁴	3.85 x 10 ⁻³	3.85 x 10 ⁻³	9.86 x 10 ⁻³	3.85 x 10 ⁻³	9.86 x 10 ⁻³	
INERTIA	ADDER (J _M)		[kg-m²/kg]	[6.21 x 10 ⁻⁷]	[2.48 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[6.36 x 10 ⁻⁶]	[2.48 x 10 ⁻⁶]	[6.36 x 10 ⁻⁶]	
Z	MOTOR	-QF11		0.048 [1.4	40 x 10 ⁻⁵]	0.161 [4	.71 x 10 ⁻⁵]	0.161 [4.	71 x 10 ⁻⁵]	
	CONFIGURATION	-QF21	lb-in² [kg-m²]	0.094 [2.7	75 x 10⁻⁵]	0.283 [8	.28 x 10 ⁻⁵]	0.283 [8.2	28 x 10 ⁻⁵]	
	(Ja)	-QL11		0.011 [3.	0.011 [3.14 x 10 ⁻⁶]		.11 x 10 ⁻⁶]	0.021 [6.	0.021 [6.11 x 10 ⁻⁶]	

- 1) UNIDIRECTIONAL AT MODERATE SPEEDS AND LOADS
- 2) AXIAL FREE PLAY WHEN DRIVE SHAFT LOCKED
- 3) REFER TO OPERATING INSTRUCTIONS FOR RE-LUBRICATION DETAILS
- 4) REFER TO SPEED VS. TRAVEL CHART ON NEXT PAGE
- 5) REFER TO LIFE VS. THRUST CHART ON NEXT PAGE
- 6) 100 MILLION INCHES [2500 km] LIFE
- 7) CORRESPONDS TO MAXIMUM THRUST
- 8) FOR HOMING AND INCREASED APPLICATION FLEXIBILITY, INCLUDE EXTRA TRAVEL WHEN NECESSARY.
- 9) ALL DIMENSIONS ARE FOR REFERENCE ONLY UNLESS SPECIFICALLY TOLERANCED.
- REFER TO ONLINE SIZING SOFTWARE FOR ACTUAL VALUES.

WEIGHT AND INERTIAL CALCULATIONS:

TOTAL WEIGHT = Wot + (WLT x TRAVEL) + MOTOR MOUNT WEIGHT [reference pages 42 and 43] TOTAL MOVING WEIGHT = Wom + (WLM x TRAVEL) + EXTERNAL PAYLOAD

FOR -Qx11: INERTIA $_{Reflected} = J_0 + (J_L \times TRAVEL) + (J_M \times TOTAL MOVING WEIGHT) + J_Q$

FOR -QF21: INERTIA Reflected = $[J_0 + (J_L \times TRAVEL) + (J_M \times TOTAL MOVING WEIGHT)] / 4 + J_0$

RBxxx **SCREW CONFIGURATION**

The ball screw drive system of the Series ESG is available in two lead choices. This provides flexibility when matching velocity and load requirements to the application. Refer to product specifications and sizing software for performance parameters.

High lead for speed

Low lead for thrust

PERFORMANCE CHARTS: SERIES ESG SLIDE

This section contains information on the capabilities of the Series ESG. It is not intended to be a comprehensive selection guide. To make the selection process simple and quick, refer to PHD's sizing software. You may request application assistance from your distributor or PHD's Customer Service Department. Use the Application Data Fax Sheet at the back of this catalog for application sizing.

PERFORMANCE CHARTS: SERIES ESG SLIDE

The deflection figures given in these charts are based on the effect of external loads. Shaft straightness, shaft weight, and bearing alignment will affect the accuracy of the saddle location. For torsional deflection calculations, see the SG Slide in the Product Sizing. Deflections shown are theoretical and reflect the performance of the unit at mid-travel. Deflections at ends of travel will be greatly reduced.

Horizontal load values are based on the load centered on the saddle as shown.

ESGB54

ESGB55

ESGB56

LOAD VALUES ARE BASED ON SERVICE LIFE OF 1000 MILLION in [25000 km]

DIMENSIONS: SERIES ESG SLIDE

		_	_	~		2	
	>	0.236	[9]	0.236	[9]	0.236	[9]
	_	M8 x 1.25	x 25	M10 x1.5	x 25	M12 x1.75 0.236	x 25
	S	οM	MO	V4		M10	2
	œ	0.3155	[8]	0.3155	[8]	0.3155	[8]
:- - -∓→	o	OM	NIO	Mo	NIO	0110	2
→ 5 ←	_	4.960	[126]	5.790	[147]	6.300	[160]
X1 SHA	0	0.492	[12.5]	0.492	[12.5]	0.492	[12.5]
MM → Ø X1 SHAFT	z	1.870	[47.5]	2.284	[58]	2.559	[65]
*	Σ	1.535	[39]	1.417	[36]	1.594	[40.2]
**************************************	_	2.008	[51]	2.283	[28]	2.441	[6.2]
	¥	0.984	[22]	0.984	[22]	0.984	[25]
	7	0.039	[1]	0.039	Ξ	0.039	Ξ
	-	5.630	[14.3]	6.338	[161]	6.811	[173]
	Ξ	2.046	[52]	2.323	[29]	2.480	[63]
	5	1.063	[27]	1.220	[31]	1.299	[33]
+=	ш	5.787	[147]	6.536	[166]	7.046	[179]
	ш	1.909	[48.5]	2.096	[53.25]	2.303	[28.2]
	0	4.744	[120.5]	5.748	[146]	6.752	[171.5]
	ပ	6.457	[164]	7.461	[189.5]	8.465	[194] [215] [171.5] [58.5]
	0B	6.891	[175]	7.635	[194]	7.635	[194]
	4	7.441	[189]	8.445	[214.5]	9.449	[240]
						_	

2.205 1.949 [49.5]

9 2

æ	.317	[8.05]	.317	[8.05]	.317	[8.05]
占	0.236	[0.9]	0.394	[10.0]	0.394	
3	0.984	[52:0]	1.102	[58.0]	1.102	[58.0]
90	0.985	[52.0]	0.905	[53.0]	0.905	[23.0]
픙	0.158	[3.0] [4.0] [25.0]	0.158	[4.0] [4.0] [23.0]	0.079	[5.0]
OE	0.118	[3.0]	.158	[4.0]	620.	[5:0]
OBA	0.319 1.178 0.118 ([59.9]	1.374	[8.1] [34.9]	0.319 1.374	[34.9]
QVA	0.319	[8.1] [29.9]	1.437 2.992 M6 x 0.319	[8.1]	0.319	[8.1]
N	M6×	1.0 × 9	M6 x	[76.0] 1.0 × 9	M6 x	1.0 × 9
MM	1.988	[50.5] 1.0 x 9	266.2	[76.0]	1.437 3.996 M6 x	[101.5]
1	1.339	[34.0]	1.437	[36.5]	1.437	[36.5]
X	M6 x 1.0 1.339	× 12	4.488 M8×1.25 1	x 12 [36.5]	5.492 M10 x1.5	[134.8] [72.0] [139.5] x15 [36.5] [101.5] 1.0 x9 [8.1] [34.9] [2.0] [2.0] [2.0] [28.0] [10.0]
7	3.956	[100.5]	4.488	14.0]	5.492	[139.5]
₹	2.658	[29.0] [67.5] [100.5]	2.795	[71.0]	2.834	[72.0]
99	1.142	[29.0]	1.226	[31.1]	1.371	[34.8]
00	0.335	[8.5]	0.335	[8.5]	0.335	[8.5]
23	3.956	[100.5]	4.488	[114]	5.492	[12.5] [139.5]
¥	0.49	[12.5]	0.49		0.49	
7	0.3155	<u></u>	0.3155	[8]	0.3155	[8]
>	.354	[6]				[6]
×	0.630	[16]	0.787			[52]
*	3.819	[6]	4.192	[106.5]	4.606	[117]
SIZE	_	4	и	c	c	0

1) UMBERS SHOWN IN \bigcirc INDICATE SLIDE POSITIONS.
2) DIMENSIONS: inch [mm]
3) DUE TO TRAVEL TOLERANCE ALLOWANCES, DIMENSION DD WILL NOT BE THE SAME ON BOTH ENDS OF THE UNIT.

QF11 FOLDBACK MOTOR MOUNTING WITH 1:1 DRIVE RATIO

QF21 FOLDBACK MOTOR MOUNTING WITH 2:1 DRIVE RATIO

Foldback motor mounting with the QF11 option provides a 1:1 drive ratio allowing similar performance to the inline motor mounting in a shorter overall length. The QF21 option provides a 2:1 drive ratio reduction for applications that require higher thrust. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

E S G B 5 4 x 500 - RB010 - BB - L6 - QF21 - Wxxxx

																*******	O DEAN	· moro		· · · · · ·
SIZE	QB	(G)	QH	MMD MIN	MMD MAX	MME	MMF	MMG	MMH 1:1	MMH 2:1	MMJ 1:1	MMJ 2:1	МММ	MML	WEIGHT lb [kg]	MMD BLANK	MMU 1:1	MMU 2:1	MMV 1:1	MMV 2:1
4	6.891	1.063	.157	.374	1.241	.374	2.185	2.480	3.917	3.839	2.854	2.776	5.157	9.08	2.25	.533	.236	.236	1.330	.892
4	[175]	[27]	[4.0]	[9.5]	[31.5]	[9.5]	[55.5]	[63.0]	[99.5]	[97.5]	[72.5]	[70.5]	[131.0]	[231]	[1.02]	[13.5]	[6.0]	[6.0]	[33.8]	[22.7]
5	7.635	1.221	.157	.374	.886	.374	2.539	3.150	4.571	4.524	3.350	3.303	6.146	10.17	3.74	.591	.315	.236	1.644	1.080
5	[194]	[31]	[4.0]	[9.5]	[22.5]	[9.5]	[64.5]	[80.0]	[116.1]	[114.9]	[85.1]	[83.9]	[156.1]	[258.4]	[1.70]	[15.0]	[8.0]	[6.0]	[41.8]	[27.4]
6	7.635	1.299	.079	.374	.886	.374	2.539	3.150	4.649	4.602	3.350	3.303	6.224	10.17	5.22	.591	.315	.236	1.644	1.080
	[194]	[33]	[2.0]	[9.5]	[22.5]	[9.5]	[64.5]	[80.0]	[118.1]	[116.9]	[85.1]	[83.9]	[158.1]	[258.4]	[2.37]	[15.0]	[8.0]	[6.0]	[41.8]	[27.4]

NOTES:

- 1) YOUR MOTOR, YOUR WAY MOTOR MOUNT -QFxx IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO SLIDE.
- 2) KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE SLIDE BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- 3) WHEN (-W0000) IS SPECIFIED, PULLEY ID IS SUPPLIED WITH UNFINISHED ID Ø MMU AND MOTOR MOUNTING PLATE IS SUPPLIED WITHOUT MOTOR MOUNTING FEATURES.
- 4) DIMENSIONS: inch [mm]

phdplus.phdinc.com

QL11 INLINE MOTOR MOUNTING WITH 1:1 DRIVE RATIO

Inline motor mounting with the QL11 option provides a 1:1 drive ratio with the lowest overall unit weight and height for high speed applications. The simple, low inertia design of the inline motor mounting allows for a cost effective solution with minimal assembly time. If a blank motor mount is desired for special motor requirements, use -W0000 motor code to order a motor mount intended for customer modification. See page 12.

											-WUUUU B	LANK WIU	TOR WOUNTING							
	SIZE	QB	(C)	(G)	(G)	(G)	(G)	(G)	(G)	(G)	QE	MMA	ММВ	ММВ	MN	1C	WEIGHT lb	ММВ	MMT	MMT MAX Shaft
312	SIZL	QD	(u)	QL.	IVIIVIA	MAX	MIN	STANDARD	OVERSIZE	[kg]	BLANK	MIN	ALLOWED							
	32	6.891	1.063	.118	1.949	1.000	.335	2.362	2.756	1.00	.842	.157	.472							
	32	[175]	[27]	[3.0]	[49.5]	[25.4]	[8.5]	[60.0]	[70.0]	[0.45]	[21.4]	[4.0]	[12.0]							
	40	7.635	1.221	.158	2.087	1.400	.335	2.756	3.465	1.44	.890	.197	.630							
	40	[194]	[31]	[4.0]	[53.0]	[35.6]	[8.5]	[70.0]	[88.0]	[0.65]	[22.6]	[5.0]	[16.0]							
Ī	50	7.635	1.299	.079	2.087	1.400	.335	3.465	4.331	3.00	.890	.197	.630							
	50	[194]	[33]	[2.0]	[53.0]	[35.6]	[8.5]	[88.0]	[110.0]	[1.36]	[22.6]	[5.0]	[16.0]							

NOTES:

- 1) YOUR MOTOR, YOUR WAY MOTOR MOUNT -QL11 IS PROVIDED IN KIT FORM TO ALLOW ASSEMBLY OF MOTOR TO SLIDE.
- 2) KITS INCLUDE DIRECTIONS AND ALL PARTS REQUIRED TO ASSEMBLE A SLIDE BASED ON -WXXXX CODE SUPPLIED BY CUSTOMER.
- 3) WHEN (-W0000) IS SPECIFIED, COUPLER ID IS SUPPLIED WITH UNFINISHED ID Ø MMT AND MOTOR MOUNTING PLATE IS SUPPLIED AT MMC "OVERSIZE" AND WITHOUT MOTOR MOUNTING FEATURES.
- 4) REFER TO CAD MODEL FOR ACTUAL DIMENSIONS.
- 5) DIMENSIONS: inch [mm]

phdplus.phdinc.com

WXXXX MOTOR CODE

Your Motor, Your Way customizable motor mounting is generated by PHD's extensive motor database at www.config. phdinc.com. The user may select their compatible motor of choice from the pre-populated motor database. In the event the chosen motor is not in the database, they may enter necessary motor features to generate the PHD motor code.

The tailored motor mounting components are included with the specified driver and shipped in kit form. See page 12.

E S G B 5 4 x 500 RB010 BB L6 QF21 Wxxxx

Q1 CORROSION RESISTANT GUIDE SHAFTS

Extremely hard corrosion-resistant coating on the guide shafts for use in applications where moisture may corrode untreated hardened and ground shafts. End faces of the shafts remain uncoated. Consult PHD for fully coated shafts.

E S G B 5 4 x 500 - RB010 - BB - Q1 - QL11 - Wxxxx

L4 LUBE FITTING IN SADDLE PORT POSITION 2 AND 4

L6 LUBE FITTING IN SADDLE PORT POSITION 3

Lube fittings provide an easy efficient method for lubricating the bearings and shafts for extended life beyond the normal catalog specifications. Periodic lubrication (every 25 million inches of travel [635 km]) is recommended for applications where heat, dust, or other conditions will dry out the bearings and shafts. PHD suggests a lightweight oil.

NOTE: *SEE CATALOG DIMENSIONS

E S G B 5 4 x 500 - RB010 - BB - L4 - QL11 - Wxxxx

E S G B 5 4 x 500 - RB010 - BB - L6 - QL11 - Wxxxx

H4 CYLINDER REPLACEMENT ONLY (WITHOUT SLIDE)

This option provides complete ECVA Cylinder replacement and motor mounting is included/excluded based on ordering specifications. If motor mounting is desired, a full unit description is required.

E S G B 5 4 x 500 - RB010 - BB - H4 - QL11 - Wxxxx

H11 SLIDE REPLACEMENT ONLY (WITHOUT CYLINDER)

This option provides the slide mechanism only without cylinder or motor mounting. Included with option -H11 is all the hardware required for mounting standard PHD Series ECVA Cylinders or pneumatic standard VDMA/ISO cylinders to the slide. A selfaligning rod coupling is also provided, making it easy to attach the appropriate VDMA/ISO cylinder. (No extra rod extension required.)

E S G B 5 4 x 500 - RB010 - BB - H11 - QL11 - Wxxxx

BB SHOCK PADS BOTH DIRECTIONS

This option provides urethane shock pads on retraction and extension for crash protection, eliminating metal-to-metal contact as the saddle reaches physical end of travel. This -BB option does not affect the overall slide length.

E S G B 5 4 x 500 - RB010 - BB - L6 - QL11 - Wxxxx

SIZE	В	C		
4	.118	.354		
4	[3]	[9]		
E	.118	.354		
5	[3]	[9]		
C	.118	.354		
6	[3]	[9]		

NOTES:

- 1) DIMENSIONS: inch [mm]
- 2) LOCK SCREW TORQUE IS 30 in-lb [3.39 Nm].

CB

PROXIMITY SWITCH READY BOTH ENDS

This option provides targets in the slide saddle for use with 8 mm inductive proximity switches. The end plates of the slide come standard with provisions for mounting the 8 mm proximity switches on both ends. Proximity switches must be ordered separately. See next page for switch information.

SIZE	Α	В	C	D
4	.57	1.10	1.476	.354
4	[14.5]	[28]	[37.5]	[9]
5	.57	1.10	1.693	.315
J	[14.5]	[28]	[43]	[8]
6	.57	1.10	2.008	.315
U	[14.5]	[28]	[51]	[8]

NOTE: DIMENSIONS: inch [mm]

ACCESSORIES: SERIES ESG SLIDE

INDUCTIVE PROXIMITY SWITCHES

Inductive proximity switches are available for use with PHD Series ESG Slides (requires option -CB). See Switches and Sensors section of PHD's main catalog for complete switch specifications.

PART NO.	DESCRIPTION
51422-005-02	8 mm Inductive Proximity Switch, NPN with 2 meter Cable
	8 mm Inductive Proximity Switch, PNP with 2 meter Cable

6250 SOLID STATE SWITCHES

Cylinder comes standard with a magnet band for use with PHD miniature Reed and Solid State Switches listed below. These switches mount easily to the cylinder using any of the three "T" slots provided in the body.

SERIES 6250 SOLID STATE SWITCHES

PART NO.	DESCRIPTION	COLOR
62505-1-02	NPN (Sink) DC Solid State, 2 m cable	Brown
62506-1-02	PNP (Source) DC Solid State, 2 m cable	Tan
62515-1	NPN (Sink) DC Solid State, Quick Connect	Brown
62516-1	PNP (Source) DC Solid State, Quick Connect	Tan

SERIES 6250 REED SWITCHES

PART NO.	DESCRIPTION	COLOR
62507-1-02	AC/DC Reed, 2 m cable	Silver
62517-1	AC/DC Reed. Quick Connect	Silver

CORDSETS WITH QUICK CONNECT

PART NO.	DESCRIPTION
61397-02	2 meter/3 wire
61397-05	5 meter/3 wire

Silver

OPTION -QFXX

OPTION -QL11

SWITCHES SHOWN:
62505-1-02, 62506-1-02 & 62507-1-02
AVAILABLE IN POSITIONS 2, 3 & 4

CYLINDER SLOT COVER
ASSEMBLED IN POSITION 1
NOT AVAILABLE FOR
SWITCH USE AS STANDARD.
CONTACT PHD FOR
ALTERNATE POSITIONS.

(3)

SWITCHES SHOWN:

62515-1, 62516-1 & 62517-1 AVAILABLE IN POSITIONS 2, 3 & 4

62515-1, 62516-1 & 62517-1 Connector Detail

SIZE	SC	SD
4	1.32	.26
	[33.5]	[6.6]
5	1.41	.19
	[35.9]	[4.9]
6	1.41	.11
	[35.9]	[2.8]

NOTE: DIMENSIONS: inch [mm]

SD

.375 [9.5]

APPLICATION SIZING QUESTIONNAIRE:

Your Name:		Organ	Organization: Contact Info:		
Project Name:		Conta			
Email:		Zip Co	de:		
			l (phdinfo@phdinc.com) or fax g software at <u>sizing.phdinc.com</u> .		
○ E0 ○ E9	CVA Cylinder CVR Cylinder GK/ESL SLIDE GG SLIDE				
Mounting Inclination	(0°=Horiz	rontal/90°=Vertical)	θ ·		
Travel Length	(in/mm)				
Payload (W)					
Is the payload guided? (Unguided load may require selection of slide)	O YES	Z			
Payload's C.G.		X			
	——O in O mm				
	O in O mm (only				
offset (z)	O in O mm (only	allowed on slides)			
Axial Thrust Force (F)	(lbf/N)	F ←			
Motor Mounting Style	○ Inline ○ Foldback	INLINE	FOLDBACK		
Foldback Gear Ratio	○ 1:1 ○ 2:1	h 1:			

MOTION PROFILE: Please include all the moves that make up one complete cycle.

	DISPLACEMENT	TOTAL TRAVEL TIME	ACCEL./DECCEL. TIME	PAYLOAD (W)	AXIAL THRUST (F)	DWELL/IDLE TIME
	in [mm]	seconds	seconds	lb [kg]	lbf [N]	seconds
HOME						
Move 1						
Move 2						
Move 3						
Move 4						

MORE PHD ELECTRIC SOLUTIONS:

PHD, Inc. 9009 Clubridge Drive P.O. Box 9070, Fort Wayne, Indiana 46899 U.S.A. Phone (260) 747-6151 • Fax (260) 747-6754 www.phdinc.com • phdinfo@phdinc.com

PHDinEurope GmbH Arnold-Sommerfeld-Ring 2 52499 Baesweiler, Germany Tel. +49 (0)2401 805 230 • Fax +49 (0)2401 805 232 www.phdinc.com • info@PHDinEurope.de

